The novel Coronavirus Disease (nCOVID-19) is a highly contagious viral infection which emerged as “Pneumonia of Unknown Etiology” at Hubei province of Wuhan city in China. The health authorities provided a considera...The novel Coronavirus Disease (nCOVID-19) is a highly contagious viral infection which emerged as “Pneumonia of Unknown Etiology” at Hubei province of Wuhan city in China. The health authorities provided a considerable empirical evidence after this outbreak and it was notified that the causative virus, named Novel Coronavirus (subsequently SARS-CoV-2) is the culprit for progressively exerting grim effects not only on individual patients but also on the International public health, with high mutational tendencies. WHO declared nCOVID-19 as a Pandemic on 11<sup>th</sup> March 2020. The spike glycoprotein of SARS-CoV-2 plays a pivotal role in the entry of virus into the cell and it further interacts with ACE-II receptors which are widely distributed on the human cell surface especially on alveolar type II cells (AT-2) and endothelium. The mortality in nCOVID-19 patients is usually preceded by acute respiratory distress syndrome (ARDS) because of the cytokine storm. Advanced molecular biology and regenerative sciences renders a breakthrough in the treatment of severely ill nCOVID-19 patients with Mesenchymal Stem Cells (MSCs). Autologous or allogenic MSCs attenuate cytokine storm, improvise lung compliance, regulate inflammatory response, maintain functional alveoli microenvironment, promote endogenous regeneration and repair with no or minimal side effects. MSCs are naturally resistant to this novel Coronavirus. Even though it is corroborated with evidences from current clinical trials and pilot study, we emphasize the need for conducting more clinical trials with ethical consideration to prove the efficacy and safety of MSCs in combating nCOVID-19 infection and its complications.展开更多
This paper presents analytical solutions for the stress and displacement field in elastic layered geo-materials induced by an arbitrary point load in the Cartesian coordinate system. The point load solutions can be ob...This paper presents analytical solutions for the stress and displacement field in elastic layered geo-materials induced by an arbitrary point load in the Cartesian coordinate system. The point load solutions can be obtained by referring to the integral transform and the transfer matrix technique. However, former solutions usually exist in the cylindrical coordinate system subjected, to axisymmetric loading. Based on the proposed solutions in the Cartesian coordinate, it is very easy to solve asymmetric problems and consider the condition with internal loads in multi-layered geo-materials. Moreover, point load solutions can be used to construct solutions for analytical examination of elastic problems and incorporated into numerical schemes such as boundary element methods. The results discussed in this paper indicate that there is no problem in the evaluation of the point load solutions with high accuracy and efficiency, and that the material non-homogeneity has a significant effect on the elastic field due to adjacent loading.展开更多
By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway a...By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway and its impact on the environment, which is adapted for the comprehensive assessment of railway environmental impact and the optimization of railway alignments. The assessment process of the GIS based map overlay method was presented, which includes deciding the system structure and weights of assessment factors, making environmental vulnerability grade maps, and evaluating the alternative alignments comprehensively to obtain the best one. With the GIS functions of spatial analysis, such as overlay analysis and buffer analysis, and functions of handling attribute data, the GIS based map overlay method overcomes the shortcomings of the existing map overlay method and the conclusion is more reasonable. In the end, a detailed case study was illustrated to verify the efficiency of the method.展开更多
The essential role of immunoglobulin G(IgG)in immune system regulation and combatting infectious diseases cannot be fully recognized without an understanding of the changes in its N-glycans attached to the asparagine ...The essential role of immunoglobulin G(IgG)in immune system regulation and combatting infectious diseases cannot be fully recognized without an understanding of the changes in its N-glycans attached to the asparagine 297 of the fragment crystallizable(Fc)domain that occur under such circumstances.These glycans impact the antibody stability,half-life,secretion,immunogenicity,and effector functions.Therefore,in this study,we analyzed and compared the total IgG glycome—at the level of individual glycan structures and derived glycosylation traits(sialylation,galactosylation,fucosylation,and bisecting Nacetylglucosamine(GlcNAc))—of 64 patients with influenza,77 patients with coronavirus disease 2019(COVID-19),and 56 healthy controls.Our study revealed a significant decrease in IgG galactosylation,sialylation,and bisecting GlcNAc(where the latter shows the most significant decrease)in deceased COVID19 patients,whereas IgG fucosylation was increased.On the other hand,IgG galactosylation remained stable in influenza patients and COVID-19 survivors.IgG glycosylation in influenza patients was more time-dependent:In the first seven days of the disease,sialylation increased and fucosylation and bisecting GlcNAc decreased;in the next 21 days,sialylation decreased and fucosylation increased(while bisecting GlcNAc remained stable).The similarity of IgG glycosylation changes in COVID-19 survivors and influenza patients may be the consequence of an adequate immune response to enveloped viruses,while the observed changes in deceased COVID-19 patients may indicate its deviation.展开更多
Extending the income dynamics approach in Quah (2003), the present paper studies the enlarging income inequality in China over the past three decades from the viewpoint of rural-urban migration and economic transiti...Extending the income dynamics approach in Quah (2003), the present paper studies the enlarging income inequality in China over the past three decades from the viewpoint of rural-urban migration and economic transition. We establish non-parametric estimations of rural and urban income distribution functions in China, and aggregate a population- weighted, nationwide income distribution function taking into account rural-urban differences in technological progress and price indexes. We calculate 12 inequality indexes through non-parametric estimation to overcome the biases in existingparametric estimation and, therefore, provide more accurate measurement of income inequalitY. Policy implications have been drawn based on our research.展开更多
文摘The novel Coronavirus Disease (nCOVID-19) is a highly contagious viral infection which emerged as “Pneumonia of Unknown Etiology” at Hubei province of Wuhan city in China. The health authorities provided a considerable empirical evidence after this outbreak and it was notified that the causative virus, named Novel Coronavirus (subsequently SARS-CoV-2) is the culprit for progressively exerting grim effects not only on individual patients but also on the International public health, with high mutational tendencies. WHO declared nCOVID-19 as a Pandemic on 11<sup>th</sup> March 2020. The spike glycoprotein of SARS-CoV-2 plays a pivotal role in the entry of virus into the cell and it further interacts with ACE-II receptors which are widely distributed on the human cell surface especially on alveolar type II cells (AT-2) and endothelium. The mortality in nCOVID-19 patients is usually preceded by acute respiratory distress syndrome (ARDS) because of the cytokine storm. Advanced molecular biology and regenerative sciences renders a breakthrough in the treatment of severely ill nCOVID-19 patients with Mesenchymal Stem Cells (MSCs). Autologous or allogenic MSCs attenuate cytokine storm, improvise lung compliance, regulate inflammatory response, maintain functional alveoli microenvironment, promote endogenous regeneration and repair with no or minimal side effects. MSCs are naturally resistant to this novel Coronavirus. Even though it is corroborated with evidences from current clinical trials and pilot study, we emphasize the need for conducting more clinical trials with ethical consideration to prove the efficacy and safety of MSCs in combating nCOVID-19 infection and its complications.
基金Project supported by the National Natural Science Foundation of China (No. 51008188)the China Postdoctoral Science Foundation (No. 20100470677)
文摘This paper presents analytical solutions for the stress and displacement field in elastic layered geo-materials induced by an arbitrary point load in the Cartesian coordinate system. The point load solutions can be obtained by referring to the integral transform and the transfer matrix technique. However, former solutions usually exist in the cylindrical coordinate system subjected, to axisymmetric loading. Based on the proposed solutions in the Cartesian coordinate, it is very easy to solve asymmetric problems and consider the condition with internal loads in multi-layered geo-materials. Moreover, point load solutions can be used to construct solutions for analytical examination of elastic problems and incorporated into numerical schemes such as boundary element methods. The results discussed in this paper indicate that there is no problem in the evaluation of the point load solutions with high accuracy and efficiency, and that the material non-homogeneity has a significant effect on the elastic field due to adjacent loading.
文摘By integrating the merits of the map overlay method and the geographic information system (GIS), a GIS based map overlay method was developed to analyze comprehensively the environmental vulnerability around railway and its impact on the environment, which is adapted for the comprehensive assessment of railway environmental impact and the optimization of railway alignments. The assessment process of the GIS based map overlay method was presented, which includes deciding the system structure and weights of assessment factors, making environmental vulnerability grade maps, and evaluating the alternative alignments comprehensively to obtain the best one. With the GIS functions of spatial analysis, such as overlay analysis and buffer analysis, and functions of handling attribute data, the GIS based map overlay method overcomes the shortcomings of the existing map overlay method and the conclusion is more reasonable. In the end, a detailed case study was illustrated to verify the efficiency of the method.
基金supported by the European Structural and Investment Funds grant for the Croatian National Centre of Competence in Molecular Diagnostics (KK.01.2.2.03.0006)the Croatian National Centre of Research Excellence in Personalized Healthcare grant (KK.01.1.1.01.0010)supported by the Human Glycome Project。
文摘The essential role of immunoglobulin G(IgG)in immune system regulation and combatting infectious diseases cannot be fully recognized without an understanding of the changes in its N-glycans attached to the asparagine 297 of the fragment crystallizable(Fc)domain that occur under such circumstances.These glycans impact the antibody stability,half-life,secretion,immunogenicity,and effector functions.Therefore,in this study,we analyzed and compared the total IgG glycome—at the level of individual glycan structures and derived glycosylation traits(sialylation,galactosylation,fucosylation,and bisecting Nacetylglucosamine(GlcNAc))—of 64 patients with influenza,77 patients with coronavirus disease 2019(COVID-19),and 56 healthy controls.Our study revealed a significant decrease in IgG galactosylation,sialylation,and bisecting GlcNAc(where the latter shows the most significant decrease)in deceased COVID19 patients,whereas IgG fucosylation was increased.On the other hand,IgG galactosylation remained stable in influenza patients and COVID-19 survivors.IgG glycosylation in influenza patients was more time-dependent:In the first seven days of the disease,sialylation increased and fucosylation and bisecting GlcNAc decreased;in the next 21 days,sialylation decreased and fucosylation increased(while bisecting GlcNAc remained stable).The similarity of IgG glycosylation changes in COVID-19 survivors and influenza patients may be the consequence of an adequate immune response to enveloped viruses,while the observed changes in deceased COVID-19 patients may indicate its deviation.
基金the National Science Foundation of China(No.70673072)the National Social Science Foundation of China(No.10JZD013)for financial support
文摘Extending the income dynamics approach in Quah (2003), the present paper studies the enlarging income inequality in China over the past three decades from the viewpoint of rural-urban migration and economic transition. We establish non-parametric estimations of rural and urban income distribution functions in China, and aggregate a population- weighted, nationwide income distribution function taking into account rural-urban differences in technological progress and price indexes. We calculate 12 inequality indexes through non-parametric estimation to overcome the biases in existingparametric estimation and, therefore, provide more accurate measurement of income inequalitY. Policy implications have been drawn based on our research.