Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cel...Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cell wall, cytoplasmic, and vacuolar subgroups, abbreviated as CWlN, CIN, and VlN, respectively. The broad importance and implications of INVs in plant development and crop productivity have attracted enormous interest to examine INV function and regulation from multiple perspectives. Here, we review some exciting advances in this area over the last two decades, focusing on (1) new or emerging roles of INV in plant development and regulation at the post-translational level through interaction with inhibitors, (2) cross-talk between INV-mediated sugar signaling and hormonal control of development, and (3) sugar- and INV-mediated responses to drought and heat stresses and their impact on seed and fruit set. Finally, we discuss major questions arising from this new progress and outline future directions for unraveling mechanisms underlying INV-mediated plant development and their potential applications in plant biotechnology and agriculture.展开更多
引言血管性认知损害(vascular cognitive impairment,VCI)诊断共识的缺乏(体现为多种不同评估方案的使用),妨碍了对其理解和治疗的推进.多个国家的大量临床医生和研究人员参与了2个阶段血管性认知损害分类共识研究(Vascular Impair...引言血管性认知损害(vascular cognitive impairment,VCI)诊断共识的缺乏(体现为多种不同评估方案的使用),妨碍了对其理解和治疗的推进.多个国家的大量临床医生和研究人员参与了2个阶段血管性认知损害分类共识研究(Vascular Impairment of Cognition Classification Consensus Study,VICCCS),旨在就VCI的诊断原则(VICCCS-1)和诊断方案(VICCCS-2)达成一致意见.本文提供了VICCCS-2的相关内容.方法使用VICCCS-1达成的原则和已发表的诊断指南作为在线德尔菲(Delphi)调查的参考基点,以期对VCI的临床诊断达成共识.结果共进行了6轮调查,每轮有65~79名专家参与,他们就VICCCS修订的轻度和重度VCI的诊断指南达成共识,并肯定了美国国立神经疾病与卒中研究所-加拿大卒中网(National Institute of Neurological Disorders and Stroke–Canadian Stroke Network,NINDS-CSN)发布的神经心理学评估方案和对影像学检查的推荐意见.讨论VICCCS-2建议规范化应用NINDS-CSN推荐的神经心理学和影像学评估方案诊断VCI,以促进研究协作.展开更多
Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance.Studying the response of soil microbial co...Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance.Studying the response of soil microbial communities to biochar amendments is important for better understanding interactions of biochar with soil,as well as plants.However,the effect of biochar on soil microorganisms has received less attention than its influences on soil physicochemical properties.In this review,the following key questions are discussed:(i)how does biochar affect soil microbial activities,in particular soil carbon(C)mineralization,nutrient cycling,and enzyme activities?(ii)how do microorganisms respond to biochar amendment in contaminated soils?and(iii)what is the role of biochar as a growth promoter for soil microorganisms?Many studies have demonstrated that biochar-soil application enhances the soil microbial biomass with substantial changes in microbial community composition.Biochar amendment changes microbial habitats,directly or indirectly affects microbial metabolic activities,and modifies the soil microbial community in terms of their diversity and abundance.However,chemical properties of biochar,(especially pH and nutrient content),and physical properties such as pore size,pore volume,and specific surface area play significant roles in determining the efficacy of biochar on microbial performance as biochar provides suitable habitats for microorgan-isms.The mode of action of biochar leading to stimulation of microbial activities is complex and is influenced by the nature of biochar as well as soil conditions.展开更多
DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, in...DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apeptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.展开更多
The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased s...The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essentialfunctions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.展开更多
Biochar,an environmentally friendly soil conditioner,is produced using several thermochemical processes.It has unique characteristics like high surface area,porosity,and surface charges.This paper reviews the fertiliz...Biochar,an environmentally friendly soil conditioner,is produced using several thermochemical processes.It has unique characteristics like high surface area,porosity,and surface charges.This paper reviews the fertilizer value of biochar,and its effects on soil properties,and nutrient use efficiency of crops.Biochar serves as an important source of plant nutrients,especially nitrogen in biochar produced from manures and wastes at low temperature(≤400℃).The phosphorus,potassium,and other nutrient contents are higher in manure/waste biochars than those in crop residues and woody biochars.The nutrient contents and pH of biochar are positively correlated with pyrolysis temperature,except for nitrogen content.Biochar improves the nutrient retention capacity of soil,which depends on porosity and surface charge of biochar.Biochar increases nitrogen retention in soil by reducing leaching and gaseous loss,and also increases phosphorus availability by decreasing the leaching process in soil.However,for potassium and other nutrients,biochar shows inconsistent(positive and negative)impacts on soil.After addition of biochar,porosity,aggregate stability,and amount of water held in soil increase and bulk density decreases.Mostly,biochar increases soil pH and,thus,influences nutrient availability for plants.Biochar also alters soil biological properties by increasing microbial populations,enzyme activity,soil respiration,and microbial biomass.Finally,nutrient use efficiency and nutrient uptake improve with the application of biochar to soil.Thus,biochar can be a potential nutrient reservoir for plants and a good amendment to improve soil properties.展开更多
Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed th...Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.展开更多
The chemical composition, mineral profile and in vitro fermentation characteristics of maize (MZ), high sugar forage sorghum (HS) and forage sorghum (FS), and silages made from each forage type were measured. Th...The chemical composition, mineral profile and in vitro fermentation characteristics of maize (MZ), high sugar forage sorghum (HS) and forage sorghum (FS), and silages made from each forage type were measured. The MZ and MZ silage (MZS) had higher crude protein, starch and ether extract contents than both sorghum forages and sorghum silages. HS had higher ash and water-soluble carbohydrate concentrations than FS and MZ. MZ, MZS, HS and HS silage (HSS) had lower neutral detergent fibre, acid detergent fibre and acid detergent lignin than FS and FS silage (FSS). FSS had higher dry matter (DM) and pH than MZS and HSS. HSS contained higher concentrations of P and K than FSS and MZS. MZS and HSS had higher in vitro dry matter and organic matter digestibility, CH4 production, total volatile fatty acids, acetate and propionate than FSS. pH was higher for FSS than for HSS, and ammonia was lower for HSS than for MZS and FSS. HSS had higher gas production than MZS and FSS after 2, 4, 6 and 8 h incubation. MZS had higher gas production than HSS and FSS after 26 and 28 h of incubation. The results indicate that HS may substitute for MZ to make good quality silage. However, animal studies are needed to assess the acceptability and feeding values of HSS vs. MZS for ruminant production.展开更多
With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel(CA) with highly enhanced thermal conductivity(TC) in vertical...With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel(CA) with highly enhanced thermal conductivity(TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires(SiC NWs)/boron nitride(BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m^(-1) K^(-1) at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy(EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 10^(11) Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of-21.5 dB and a wide effective absorption bandwidth(<-10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications.展开更多
In most higher plants, sucrose is the primary organic carbon that is translocated through phloem from photosynthetic leaves (source) into non-photosynthetic tissues (sink) such as seed, fruit, and root. After phlo...In most higher plants, sucrose is the primary organic carbon that is translocated through phloem from photosynthetic leaves (source) into non-photosynthetic tissues (sink) such as seed, fruit, and root. After phloem unloading in sinks, sucrose needs to be degraded into hexoses for diverse use by either invertase (Inv) that hydrolyses sucrose into glucose and fructose or sucrose synthase (Sus) that degrades sucrose into UDPglucose and fructose. By generating hexoses and their derivates, Inv- or Sus-mediated sucrose metabolism and re- lated transport process provide (1) energy source to power cel- lular processes; (2) starting molecules convertible to numerous metabolites and building blocks for synthesizing essential pol- ymers including starch, cellulose, callose, and proteins; and (3) a mechanism to reduce sucrose concentration at the unloading sites to facilitate its source-to-sink translocation, thereby pre- venting feedback inhibition on photosynthesis and sustaining carbon flow at the whole-plant level.展开更多
LA-ICPMS zircon U-Pb dating has been greatly advanced and widely applied in the past decade because it is a cheap and fast technique.The internal error of LA-ICPMS zircon U-Pb dating can be better than 1%,but reproduc...LA-ICPMS zircon U-Pb dating has been greatly advanced and widely applied in the past decade because it is a cheap and fast technique.The internal error of LA-ICPMS zircon U-Pb dating can be better than 1%,but reproducibility(accuracy)is relatively poor.In order to quantitatively assess the accuracy of this technique,zircons from two dioritic rocks,a Mesozoic dioritic microgranular enclave(FS06)and a Neoproterozoic diorite(WC09-32),were dated independently in eight laboratories using SIMS and LA-ICPMS.Results of three SIMS analyses on FS06 and WC09-2 are indistinguishable within error and give a best estimate of the crystallization age of 132.2 and 760.5 Ma(reproducibility is^1%,2RSD),respectively.Zircon U-Pb ages determined by LA-ICPMS in six laboratories vary from 128.3±1.0 to 135.0±0.9 Ma(2SE)for FS06 and from 742.9±3.1 to777.8±4.7 Ma(2SE)for WC09-32,suggesting a reproducibility of^4%(2RSD).Uncertainty produced during LA-ICPMS zircon U-Pb analyses comes from multiple sources,including uncertainty in the isotopic ratio measurements,uncertainty in the fractionation factor calculation using an external standard,uncertainty in the age determination as a result of common lead correction,age uncertainty of the external standards and uncertainty in the data reduction.Result of our study suggests that the uncertainty of LA-ICPMS zircon U-Pb dating is approximately 4%(2RSD).The uncertainty in age determination must be considered in order to interpret LA-ICPMS zircon U-Pb data rationally.展开更多
Biochar,derived from thermal pyrolysis of biomass,has been regarded as a low-cost,sustainable and beneficial material and widely applied in agriculture,environment and energy during the last two decades.To elucidate t...Biochar,derived from thermal pyrolysis of biomass,has been regarded as a low-cost,sustainable and beneficial material and widely applied in agriculture,environment and energy during the last two decades.To elucidate the research status timely and future trends in biochar field,CiteSpace is used to systematically analyze the related literature retrieved from the Web of Science core collection in 2019.Based on the keywords clustering analysis,it was found that“biochar production”,“organic pollutants removal”,“heavy metals immobilization”,“bioremediation”were the main hotspots in research covering biochar.“Bioremediation”is an emerging topic and deserves extensive attention due to its highly effective and environmentally friendly treatment of pollutants.Improving the phytoremediation effect,immobilizing functional microorganisms on biochar,and using microorganisms as raw materials to produce biochar were the common methods of biochar-assisted bioremediation.While studies focused on“soil quality and plant growth”and“biochar and global climate change”decreased,investigations concentrated in the toxicity of biochar to soil biota and ruminants are sustainably growing.Research on direct and catalytic thermal pyrolysis of green waste(mainly microalgae)for biofuels(bio-oil,biodiesel,syngas,etc.)and biochar production is increasing.Converting municipal wastes(e.g.,sewage sludge,fallen leaves)into biochar through pyrolysis was a suitable treatment for municipal waste and became a popular topic in recent time.Moreover,the biochar produced from these municipal wastes exhibited excellent performance in the removal of pollutants from wastewater and soil.This review may help to identify future directions in biochar research and applications.展开更多
The tremendous development of Synthetic Aperture Radar(SAR)missions in recent years facilitates the study of smaller amplitude ground deformation over greater spatial scales using longer time series.However,this poses...The tremendous development of Synthetic Aperture Radar(SAR)missions in recent years facilitates the study of smaller amplitude ground deformation over greater spatial scales using longer time series.However,this poses greater challenges for correcting atmospheric effects due to the wider coverage of SAR imagery than ever.Previous attempts have used observations from Global Positioning System(GPS)and Numerical Weather Models(NWMs)to separate atmospheric delays,but they are limited by(1)The availability(and distribution)of GPS stations;(2)The low spatial resolution of NWM;And(3)The difficulties in quantifying their performance.To overcome these limitations,we have developed the Generic Atmospheric Correction Online Service for InSAR(GACOS)which utilizes the high-resolution European Centre for Medium-Range Weather Forecasts(ECMWF)products using an Iterative Tropospheric Decomposition(ITD)model.This enables the reduction of the coupling effects of the troposphere turbulence and stratification and hence achieves equivalent performances over flat and mountainous terrains.GACOS comprises a range of notable features:(1)Global coverage;(2)All-weather,all-time usability;(3)Available with a maximum of two-day latency;And(4)Indicators available to assess the model’s performance and feasibility.In this paper,we demonstrate some successful applications of the GACOS online service to a variety of geophysical studies.展开更多
文摘Invertase (INV) hydrolyzes sucrose into glucose and fructose, thereby playing key roles in primary metabolism and plant development. Based on their pH optima and sub-cellular locations, INVs are categorized into cell wall, cytoplasmic, and vacuolar subgroups, abbreviated as CWlN, CIN, and VlN, respectively. The broad importance and implications of INVs in plant development and crop productivity have attracted enormous interest to examine INV function and regulation from multiple perspectives. Here, we review some exciting advances in this area over the last two decades, focusing on (1) new or emerging roles of INV in plant development and regulation at the post-translational level through interaction with inhibitors, (2) cross-talk between INV-mediated sugar signaling and hormonal control of development, and (3) sugar- and INV-mediated responses to drought and heat stresses and their impact on seed and fruit set. Finally, we discuss major questions arising from this new progress and outline future directions for unraveling mechanisms underlying INV-mediated plant development and their potential applications in plant biotechnology and agriculture.
文摘引言血管性认知损害(vascular cognitive impairment,VCI)诊断共识的缺乏(体现为多种不同评估方案的使用),妨碍了对其理解和治疗的推进.多个国家的大量临床医生和研究人员参与了2个阶段血管性认知损害分类共识研究(Vascular Impairment of Cognition Classification Consensus Study,VICCCS),旨在就VCI的诊断原则(VICCCS-1)和诊断方案(VICCCS-2)达成一致意见.本文提供了VICCCS-2的相关内容.方法使用VICCCS-1达成的原则和已发表的诊断指南作为在线德尔菲(Delphi)调查的参考基点,以期对VCI的临床诊断达成共识.结果共进行了6轮调查,每轮有65~79名专家参与,他们就VICCCS修订的轻度和重度VCI的诊断指南达成共识,并肯定了美国国立神经疾病与卒中研究所-加拿大卒中网(National Institute of Neurological Disorders and Stroke–Canadian Stroke Network,NINDS-CSN)发布的神经心理学评估方案和对影像学检查的推荐意见.讨论VICCCS-2建议规范化应用NINDS-CSN推荐的神经心理学和影像学评估方案诊断VCI,以促进研究协作.
文摘Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance.Studying the response of soil microbial communities to biochar amendments is important for better understanding interactions of biochar with soil,as well as plants.However,the effect of biochar on soil microorganisms has received less attention than its influences on soil physicochemical properties.In this review,the following key questions are discussed:(i)how does biochar affect soil microbial activities,in particular soil carbon(C)mineralization,nutrient cycling,and enzyme activities?(ii)how do microorganisms respond to biochar amendment in contaminated soils?and(iii)what is the role of biochar as a growth promoter for soil microorganisms?Many studies have demonstrated that biochar-soil application enhances the soil microbial biomass with substantial changes in microbial community composition.Biochar amendment changes microbial habitats,directly or indirectly affects microbial metabolic activities,and modifies the soil microbial community in terms of their diversity and abundance.However,chemical properties of biochar,(especially pH and nutrient content),and physical properties such as pore size,pore volume,and specific surface area play significant roles in determining the efficacy of biochar on microbial performance as biochar provides suitable habitats for microorgan-isms.The mode of action of biochar leading to stimulation of microbial activities is complex and is influenced by the nature of biochar as well as soil conditions.
文摘DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apeptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy.
基金supported in part by the National Science Foundation (grants IOS-0752997 and IOS-0918433 to WJL grants IOS#0749731, IOS#051909 to PK)+8 种基金the Department of Energy, Division of Energy Biosciences (grantsDE-FG02-94ER20134 to WJL)the US Department of Agriculture, Agricultural Research Service (under Agreement number58-6250-0-008 to MAG)the Spanish Ministry of Science andInnovation (MICINN) (grants AGL2007-61948 and AGL2009-09018 to AFLM)the Ministry of Education, Science, Sportsand Culture of Japan (grant 19060009 to HF)the JapanSociety for the Promotion of Science (JSPS grant 23227001to HF)the NC-CARP project (to HF)the NationalKey Basic Research Program of China (grant 2012CB114500to XH)the National Natural Science Foundation of China (grant31070156 to XH)the NSFC-JSPS cooperation project(grant 31011140070 to HF and XH)
文摘The emergence of the tracheophyte-based vascular system of land plants had major impacts on the evolution of terrestrial biology, in general, through its role in facilitating the development of plants with increased stature, photosynthetic output, and ability to colonize a greatly expanded range of environmental habitats. Recently, considerable progress has been made in terms of our understanding of the developmental and physiological programs involved in the formation and function of the plant vascular system. In this review, we first examine the evolutionary events that gave rise to the tracheophytes, followed by analysis of the genetic and hormonal networks that cooperate to orchestrate vascular development in the gymnosperms and angiosperms. The two essentialfunctions performed by the vascular system, namely the delivery of resources (water, essential mineral nutrients, sugars and amino acids) to the various plant organs and provision of mechanical support are next discussed. Here, we focus on critical questions relating to structural and physiological properties controlling the delivery of material through the xylem and phloem. Recent discoveries into the role of the vascular system as an effective long-distance communication system are next assessed in terms of the coordination of developmental, physiological and defense-related processes, at the whole-plant level. A concerted effort has been made to integrate all these new findings into a comprehensive picture of the state-of-the-art in the area of plant vascular biology. Finally, areas important for future research are highlighted in terms of their likely contribution both to basic knowledge and applications to primary industry.
基金MZH acknowledges scholarship from the University of Newcastle,Australia,and Cooperative Research Centre for High Performance Soils(Soil CRC).
文摘Biochar,an environmentally friendly soil conditioner,is produced using several thermochemical processes.It has unique characteristics like high surface area,porosity,and surface charges.This paper reviews the fertilizer value of biochar,and its effects on soil properties,and nutrient use efficiency of crops.Biochar serves as an important source of plant nutrients,especially nitrogen in biochar produced from manures and wastes at low temperature(≤400℃).The phosphorus,potassium,and other nutrient contents are higher in manure/waste biochars than those in crop residues and woody biochars.The nutrient contents and pH of biochar are positively correlated with pyrolysis temperature,except for nitrogen content.Biochar improves the nutrient retention capacity of soil,which depends on porosity and surface charge of biochar.Biochar increases nitrogen retention in soil by reducing leaching and gaseous loss,and also increases phosphorus availability by decreasing the leaching process in soil.However,for potassium and other nutrients,biochar shows inconsistent(positive and negative)impacts on soil.After addition of biochar,porosity,aggregate stability,and amount of water held in soil increase and bulk density decreases.Mostly,biochar increases soil pH and,thus,influences nutrient availability for plants.Biochar also alters soil biological properties by increasing microbial populations,enzyme activity,soil respiration,and microbial biomass.Finally,nutrient use efficiency and nutrient uptake improve with the application of biochar to soil.Thus,biochar can be a potential nutrient reservoir for plants and a good amendment to improve soil properties.
基金Ministry of Higher Education of Malaysia for funding the project on PEC NDT at IIUM through the research grant FRGS16-059-0558supported by the National Natural Science Foundation of China under research grants 51677187 and 51307172
文摘Pulsed eddy current (PEC) non-destructive test- ing and evaluation (NDT&E) has been around for some time and it is still attracting extensive attention from researchers around the globe, which can be witnessed through the reports reviewed in this paper. Thanks to its richness of spectral components, various applications of this technique have been proposed and reported in the lit- erature covering both structural integrity inspection and material characterization in various industrial sectors. To support its development and for better understanding of the phenomena around the transient induced eddy currents, attempts for its modelling both analytically and numeri- cally have been made by researchers around the world. This review is an attempt to capture the state-of-the-art development and applications of PEC, especially in the last 15 years and it is not intended to be exhaustive. Future challenges and opportunities for PEC NDT&E are also presented.
基金jointly supported by the Nati onal Natural Science Foundation of China (31160472)the Chancellor Funds of Tarim University, China (TDZKBS201102)funded by Agmardt Post-Doctoral Fellowship (New Zealand)
文摘The chemical composition, mineral profile and in vitro fermentation characteristics of maize (MZ), high sugar forage sorghum (HS) and forage sorghum (FS), and silages made from each forage type were measured. The MZ and MZ silage (MZS) had higher crude protein, starch and ether extract contents than both sorghum forages and sorghum silages. HS had higher ash and water-soluble carbohydrate concentrations than FS and MZ. MZ, MZS, HS and HS silage (HSS) had lower neutral detergent fibre, acid detergent fibre and acid detergent lignin than FS and FS silage (FSS). FSS had higher dry matter (DM) and pH than MZS and HSS. HSS contained higher concentrations of P and K than FSS and MZS. MZS and HSS had higher in vitro dry matter and organic matter digestibility, CH4 production, total volatile fatty acids, acetate and propionate than FSS. pH was higher for FSS than for HSS, and ammonia was lower for HSS than for MZS and FSS. HSS had higher gas production than MZS and FSS after 2, 4, 6 and 8 h incubation. MZS had higher gas production than HSS and FSS after 26 and 28 h of incubation. The results indicate that HS may substitute for MZ to make good quality silage. However, animal studies are needed to assess the acceptability and feeding values of HSS vs. MZS for ruminant production.
基金financial support from National Natural Science Foundation of China(21704096,51703217)the China Postdoctoral Science Foundation(Grant No.2019M662526)financial support from Taif University Researchers Supporting Project Number(TURSP-2020/135),Taif University,Taif,Saudi Arabia。
文摘With the innovation of microelectronics technology, the heat dissipation problem inside the device will face a severe test. In this work, cellulose aerogel(CA) with highly enhanced thermal conductivity(TC) in vertical planes was successfully obtained by constructing a vertically aligned silicon carbide nanowires(SiC NWs)/boron nitride(BN) network via the ice template-assisted strategy. The unique network structure of SiC NWs connected to BN ensures that the TC of the composite in the vertical direction reaches 2.21 W m^(-1) K^(-1) at a low hybrid filler loading of 16.69 wt%, which was increased by 890% compared to pure epoxy(EP). In addition, relying on unique porous network structure of CA, EP-based composite also showed higher TC than other comparative samples in the horizontal direction. Meanwhile, the composite exhibits good electrically insulating with a volume electrical resistivity about 2.35 × 10^(11) Ω cm and displays excellent electromagnetic wave absorption performance with a minimum reflection loss of-21.5 dB and a wide effective absorption bandwidth(<-10 dB) from 8.8 to 11.6 GHz. Therefore, this work provides a new strategy for manufacturing polymer-based composites with excellent multifunctional performances in microelectronic packaging applications.
文摘In most higher plants, sucrose is the primary organic carbon that is translocated through phloem from photosynthetic leaves (source) into non-photosynthetic tissues (sink) such as seed, fruit, and root. After phloem unloading in sinks, sucrose needs to be degraded into hexoses for diverse use by either invertase (Inv) that hydrolyses sucrose into glucose and fructose or sucrose synthase (Sus) that degrades sucrose into UDPglucose and fructose. By generating hexoses and their derivates, Inv- or Sus-mediated sucrose metabolism and re- lated transport process provide (1) energy source to power cel- lular processes; (2) starting molecules convertible to numerous metabolites and building blocks for synthesizing essential pol- ymers including starch, cellulose, callose, and proteins; and (3) a mechanism to reduce sucrose concentration at the unloading sites to facilitate its source-to-sink translocation, thereby pre- venting feedback inhibition on photosynthesis and sustaining carbon flow at the whole-plant level.
基金supported by the State Key Laboratory of Lithospheric EvolutionThe analyses at the University of Newcastle were financially supported by the Analytical&Biomolecular Research Facility(ABRF)unitsupported by the National Basic Research Program of China(Grant Nos.2012CB416702)
文摘LA-ICPMS zircon U-Pb dating has been greatly advanced and widely applied in the past decade because it is a cheap and fast technique.The internal error of LA-ICPMS zircon U-Pb dating can be better than 1%,but reproducibility(accuracy)is relatively poor.In order to quantitatively assess the accuracy of this technique,zircons from two dioritic rocks,a Mesozoic dioritic microgranular enclave(FS06)and a Neoproterozoic diorite(WC09-32),were dated independently in eight laboratories using SIMS and LA-ICPMS.Results of three SIMS analyses on FS06 and WC09-2 are indistinguishable within error and give a best estimate of the crystallization age of 132.2 and 760.5 Ma(reproducibility is^1%,2RSD),respectively.Zircon U-Pb ages determined by LA-ICPMS in six laboratories vary from 128.3±1.0 to 135.0±0.9 Ma(2SE)for FS06 and from 742.9±3.1 to777.8±4.7 Ma(2SE)for WC09-32,suggesting a reproducibility of^4%(2RSD).Uncertainty produced during LA-ICPMS zircon U-Pb analyses comes from multiple sources,including uncertainty in the isotopic ratio measurements,uncertainty in the fractionation factor calculation using an external standard,uncertainty in the age determination as a result of common lead correction,age uncertainty of the external standards and uncertainty in the data reduction.Result of our study suggests that the uncertainty of LA-ICPMS zircon U-Pb dating is approximately 4%(2RSD).The uncertainty in age determination must be considered in order to interpret LA-ICPMS zircon U-Pb data rationally.
基金support by the National Natural Science Foundation of China(21537002)the Special research assistant project,Chinese academy of sciences(Project no.E022ST01).
文摘Biochar,derived from thermal pyrolysis of biomass,has been regarded as a low-cost,sustainable and beneficial material and widely applied in agriculture,environment and energy during the last two decades.To elucidate the research status timely and future trends in biochar field,CiteSpace is used to systematically analyze the related literature retrieved from the Web of Science core collection in 2019.Based on the keywords clustering analysis,it was found that“biochar production”,“organic pollutants removal”,“heavy metals immobilization”,“bioremediation”were the main hotspots in research covering biochar.“Bioremediation”is an emerging topic and deserves extensive attention due to its highly effective and environmentally friendly treatment of pollutants.Improving the phytoremediation effect,immobilizing functional microorganisms on biochar,and using microorganisms as raw materials to produce biochar were the common methods of biochar-assisted bioremediation.While studies focused on“soil quality and plant growth”and“biochar and global climate change”decreased,investigations concentrated in the toxicity of biochar to soil biota and ruminants are sustainably growing.Research on direct and catalytic thermal pyrolysis of green waste(mainly microalgae)for biofuels(bio-oil,biodiesel,syngas,etc.)and biochar production is increasing.Converting municipal wastes(e.g.,sewage sludge,fallen leaves)into biochar through pyrolysis was a suitable treatment for municipal waste and became a popular topic in recent time.Moreover,the biochar produced from these municipal wastes exhibited excellent performance in the removal of pollutants from wastewater and soil.This review may help to identify future directions in biochar research and applications.
基金National Natural Science Foundation of China(No.41941019)Fundamental Research Funds for the Central Universities(Nos.300102260301/087,300102260404/087)。
文摘The tremendous development of Synthetic Aperture Radar(SAR)missions in recent years facilitates the study of smaller amplitude ground deformation over greater spatial scales using longer time series.However,this poses greater challenges for correcting atmospheric effects due to the wider coverage of SAR imagery than ever.Previous attempts have used observations from Global Positioning System(GPS)and Numerical Weather Models(NWMs)to separate atmospheric delays,but they are limited by(1)The availability(and distribution)of GPS stations;(2)The low spatial resolution of NWM;And(3)The difficulties in quantifying their performance.To overcome these limitations,we have developed the Generic Atmospheric Correction Online Service for InSAR(GACOS)which utilizes the high-resolution European Centre for Medium-Range Weather Forecasts(ECMWF)products using an Iterative Tropospheric Decomposition(ITD)model.This enables the reduction of the coupling effects of the troposphere turbulence and stratification and hence achieves equivalent performances over flat and mountainous terrains.GACOS comprises a range of notable features:(1)Global coverage;(2)All-weather,all-time usability;(3)Available with a maximum of two-day latency;And(4)Indicators available to assess the model’s performance and feasibility.In this paper,we demonstrate some successful applications of the GACOS online service to a variety of geophysical studies.