AIM: To determine the number of regulatory T cells (Tregs) in gastric mucosa of patients with gastritis, peptic ulcers and gastric cancer. METHODS: This study was a retrospective analysis of gastric antrum biopsy spec...AIM: To determine the number of regulatory T cells (Tregs) in gastric mucosa of patients with gastritis, peptic ulcers and gastric cancer. METHODS: This study was a retrospective analysis of gastric antrum biopsy specimens from healthy controls (n = 22) and patients with gastritis (n = 30), peptic ulcer (n = 83), or gastric cancer (n = 32). Expression of CD4, CD25 and Foxp3 was determined by immunohistochemistry in three consecutive sections per sample.RESULTS: Compared with healthy controls, there was an increased number of CD25+ and Foxp3+ cells in patients with gastritis (P = 0.004 and P = 0.008), peptic ulcer (P < 0.001 and P < 0.001), and gastric cancer (P < 0.001 and P < 0.001). The ratio of CD25+/CD4+ or Foxp3+/CD4+ cells was also significantly higher in all disease groups (P < 0.001, respectively). The number of CD4+, CD25+, and Foxp3+ cells, and the ratio of CD25+/CD4+ and Foxp3+/CD4+ cells, were associated with the histological grade of the specimens, including acute inflammation, chronic inflammation, lymphoid follicle number, and Helicobacter pylori infection. The number of CD4+, CD25+ and Foxp3+ cells, and the ratio of CD25+/CD4+ and Foxp3+/CD4+ cells, were negatively associated with intestinal metaplasia among gastritis (P < 0.001, P < 0.001, P < 0.001, P = 0.002 and P = 0.002) and peptic ulcer groups (P = 0.013, P = 0.004, P < 0.001, P = 0.040 and P = 0.003).展开更多
The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alte...The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum(F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6%(44/511), which was lower than that in United States cohort studies(13%). Similar to the United States studies, F. nucleatum positivityin Japanese colorectal cancers was significantly associated with microsatellite instability(MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets(i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain micro RNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. Micro RNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in colorectal cancer cells. Thus, emerging evidence may 展开更多
Metabolic rewiring and epigenetic remodeling,which are closely linked and reciprocally regulate each other,are among the well-known cancer hallmarks.Recent evi-dence suggests that many metabolites serve as sub-strates...Metabolic rewiring and epigenetic remodeling,which are closely linked and reciprocally regulate each other,are among the well-known cancer hallmarks.Recent evi-dence suggests that many metabolites serve as sub-strates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regional-ization of enzymes or metabolites.Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts,playing important roles in tumor progression.In this review,we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations,in particular the acety-lation and methylation of histone proteins and DNA.We also discuss other eminent metabolic modifications such as,succinylation,hydroxybutyrylation,and lacty-lation,and update the current advances in metabolism-and epigenetic modification-based therapeutic pro-spects in cancer.展开更多
This guideline is established to standardize the prevention,diagnosis and antiviral therapy of chronic hepatitis B(CHB).For other treatment regimens and methods involving CHB,please refer to relevant guidelines and co...This guideline is established to standardize the prevention,diagnosis and antiviral therapy of chronic hepatitis B(CHB).For other treatment regimens and methods involving CHB,please refer to relevant guidelines and consensuses.The Chinese Society of Hepatology,Chinese Medical Association(CMA)and the Society of Infectious Diseases,CMA organized relevant native experts to establish this Guideline of Prevention and Treatment for Chronic Hepatitis B(1st version)in 2005,and made the first revision in 2010.In the past 5 years,great progress has been made in the native and foreign fundamental and clinical research with respect to CHB,necessitating additional revision of this guideline.展开更多
Aging is characterized by a progressive deterioration of physiological integrity,leading to impaired functional ability and ultimately increased susceptibility to death.It is a major risk factor for chronic human dise...Aging is characterized by a progressive deterioration of physiological integrity,leading to impaired functional ability and ultimately increased susceptibility to death.It is a major risk factor for chronic human diseases,including cardiovascular disease,diabetes,neurological degeneration,and cancer.Therefore,the growing emphasis on “healthy aging” raises a series of important questions in life and social sciences.In recent years,there has been unprecedented progress in aging research,particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes.In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases,we review the descriptive,conceptual,and interventive aspects of the landscape of aging composed of a number of layers at the cellular,tissue,organ,organ system,and organismal levels.展开更多
Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecu...Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation(LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization,gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin-and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre-and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.展开更多
Background Histone deacetylase inhibitors (HDACIs) have been reported to induce apoptosis in cancer cells. The effects of trichostatin A (TSA) on gastric cancer cells have not been well characterized. This study w...Background Histone deacetylase inhibitors (HDACIs) have been reported to induce apoptosis in cancer cells. The effects of trichostatin A (TSA) on gastric cancer cells have not been well characterized. This study was aimed to explore the effects and mechanisms of TSA on human gastric cancer SGC-7901 cells. Methods The cells were treated with TSA and analyzed by cell proliferation assay, Western blot, TUNEL assay, flow cytometry by fluorescein isothiocyanate (FITC) conjugated with Annexin V and PI staining, immunofluorescence analysis, analysis of subcellular fractionation, gene chips and real time polymerase chain reaction (PCR). Results TSA could inhibit cell growth and induced apoptosis in gastric cancer SGC-7901 cells through the regulation of apoptosis-related genes, such as Bcl-2, Bax and survivin. Further study indicated that the pan-caspase inhibitor z-VAD-fmk did not inhibit the apoptosis induced by TSA, and we did not observe the cleavage of poly ADP ribose polymerase (PARP) after TSA treatment too. In addition, apoptosis inducing factor (AIF) and EndoG were found to translocate from mitochondria to nucleus in the immunofluorescence assay and the Western analysis of subcellular fractionation confirmed the result of immunofluorescence assay. Conclusions The apoptosis induced by TSA in gastric cancer SGC-7901 cells involves a caspase-independent pathway.展开更多
AIM:To investigate human epidermal growth factor receptor 2(HER2)-phosphatidylinositol 3-kinase(PI3K)-vAkt murine thymoma viral oncogene homolog signaling pathway.METHODS:We analyzed 231 formalin-fixed,paraffinembedde...AIM:To investigate human epidermal growth factor receptor 2(HER2)-phosphatidylinositol 3-kinase(PI3K)-vAkt murine thymoma viral oncogene homolog signaling pathway.METHODS:We analyzed 231 formalin-fixed,paraffinembedded gastric cancer tissue specimens from Japanese patients who had undergone surgical treatment.The patients' age,sex,tumor location,depth of invasion,pathological type,lymph node metastasis,and pathological stage were determined by a review of the medical records.Expression of HER2 was analyzed by immunohistochemistry(IHC) using the HercepTest TM kit.Standard criteria for HER2 positivity(0,1+,2+,and 3+) were used.Tumors that scored 3+ were considered HER2-positive.Expression of phospho Akt(pAkt) was also analyzed by IHC.Tumors were considered pAkt-positive when the percentage of positive tumor cells was 10% or more.PI3K,catalytic,alpha polypeptide(PIK3CA) mutations in exons 1,9 and 20 were analyzed by pyrosequencing.Epstein-Barr virus(EBV) infection was analyzed by in situ hybridization targeting EBV-encoded small RNA(EBER) with an EBER-RNA probe.Microsatellite instability(MSI) was analyzed by polymerase chain reaction using the mononucleotide markers BAT25 and BAT26.RESULTS:HER2 expression levels of 0,1+,2+ and 3+ were found in 167(72%),32(14%),12(5%) and 20(8.7%) samples,respectively.HER2 overexpression(IHC 3+) significantly correlated with intestinal histological type(15/20 vs 98 /205,P = 0.05).PIK3CA mutations were present in 20 cases(8.7%) and significantly correlated with MSI(10/20 vs 9/211,P < 0.01).The mutation frequency was high(21%) in T4 cancers and very low(6%) in T2 cancers.Mutations in exons 1,9 and 20 were detected in 5(2%),9(4%) and 7(3%) cases,respectively.Two new types of PIK3CA mutation,R88Q and R108H,were found in exon1.All PIK3CA mutations were heterozygous missense singlebase substitutions,the most common being H1047R(6/20,30%) in exon20.Eighteen cancers(8%) were EBV-positive and this positivity significantly correlated with a diffuse histological type(13/18 vs 93/198,P = 0.04).T展开更多
The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live.Metabolic reprogramming supports tumor cells’high demand of biogenesis for their rapid proliferat...The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live.Metabolic reprogramming supports tumor cells’high demand of biogenesis for their rapid proliferation,and helps tumor cells to survive under certain genetic or environmental stresses.Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes,in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways.Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation.This cancer metabolic phenotype,described firstly by German physiologist Otto Warburg,ensures enhanced glycolytic metabolism for the biosynthesis of macromolecules.The conception of metabolite signaling,i.e.,metabolites are regulators of cell signaling,provides novel insights into how reactive oxygen species(ROS)and other metabolites deregulation may regulate redox homeostasis,epigenetics,and proliferation of cancer cells.Moreover,the unveiling of noncanonical functions of metabolic enzymes,such as the moonlighting functions of phosphoglycerate kinase 1(PGK1),reassures the importance of metabolism in cancer development.The metabolic,microRNAs,and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome.Among them,cancer microenvironmental cells are immune cells which exert profound effects on cancer cells.Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.展开更多
Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells(MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and ...Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells(MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and repair. Abnormal function of osteogenic cells or diminished MSCs within the cranial suture can lead to skull defects, such as craniosynostosis. Despite the important function of each of these cell types within the cranial suture, we have limited knowledge about the role that crosstalk between them may play in regulating calvarial bone homeostasis and injury repair. Here we show that suture MSCs give rise to osteoprogenitors that show active bone morphogenetic protein(BMP) signalling and depend on BMP-mediated Indian hedgehog(IHH) signalling to balance osteogenesis and osteoclastogenesis activity. IHH signalling and receptor activator of nuclear factor kappa-Β ligand(RANKL) may function synergistically to promote the differentiation and resorption activity of osteoclasts. Loss of Bmpr1a in MSCs leads to downregulation of hedgehog(Hh) signalling and diminished cranial sutures. Significantly, activation of Hh signalling partially restores suture morphology in Bmpr1a mutant mice, suggesting the functional importance of BMP-mediated Hh signalling in regulating suture tissue homeostasis. Furthermore, there is an increased number of CD200+ cells in Bmpr1a mutant mice, which may also contribute to the inhibited osteoclast activity in the sutures of mutant mice. Finally, suture MSCs require BMPmediated Hh signalling during the repair of calvarial bone defects after injury. Collectively, our studies reveal the molecular and cellular mechanisms governing cell–cell interactions within the cranial suture that regulate calvarial bone homeostasis and repair.展开更多
Traumatic spinal cord injury(SCI) is a major challenge in the clinic. In this study, we sought to examine the synergistic effects of linear ordered collagen scaffold(LOCS) and human placenta-derived mesenchymal stem c...Traumatic spinal cord injury(SCI) is a major challenge in the clinic. In this study, we sought to examine the synergistic effects of linear ordered collagen scaffold(LOCS) and human placenta-derived mesenchymal stem cells(hPMSCs) when transplanted into completely transected beagle dogs. After 36 weeks observation, we found that LOCS+hPMSCs implants promoted better hindlimb locomotor recovery than was observed in the non-treatment(control) group and LOCS group. Histological analysis showed that the regenerated tissue after treatment was well integrated with the host tissue, and dramatically reduced the volume of cystic and chondroitin sulfate proteoglycans(CSPGs) expression. Furthermore, the LOCS+hPMSCs group also showed more neuron-specific βIII-tubulin(Tuj-1)-and NeuN-positive neurons in the lesion area, as well as axonal regeneration, remyelination and synapse formation in the lesion site. Additionally, dogs in the LOCS+hPMSCs group experienced enhanced sprouting of both ascending(CGRP-positive) sensory fibers and descending(5-HT-and TH-positive) motor fibers at the lesion area. All these data together suggested that the combined treatment had beneficial effects on neuronal regeneration and functional improvement in a canine complete transection model. Therefore, LOCS+hPMSCs implantation holds a great promise for bridging the nerve defect and may be clinically useful in the near future.展开更多
Natural peroxisome proliferator-activated receptor-γ(PPAR-γ) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin(Cur) is a bright yellow spice, derived fro...Natural peroxisome proliferator-activated receptor-γ(PPAR-γ) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin(Cur) is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been shown to have many biological properties that appear to operate through diverse mechanisms. Some of these potentially beneficial effects of Cur are due to activation of the nuclear transcription factor PPAR-γ. It is reported(using in vitro and in vivo models) that Cur plays a potential role against several diseases. In this review article, we present the current literature on the effects of Cur on the modulation of inflammatory processes that are mediated through PPAR-γ.展开更多
Viral hepatitis,secondary to infection with hepatitis A,B,C,D,and E viruses,are a major public health problem and an important cause of morbidity and mortality.Despite the huge medical advances achieved in recent year...Viral hepatitis,secondary to infection with hepatitis A,B,C,D,and E viruses,are a major public health problem and an important cause of morbidity and mortality.Despite the huge medical advances achieved in recent years,there are still points of conflict concerning the pathogenesis,immune response,development of new and more effective vaccines,therapies,and treatment.This review focuses on the most important research topics that deal with issues that are currently being solved,those that remain to be solved,and future research directions.For hepatitis A virus we will address epidemiology,molecular surveillance,new susceptible populations as well as environmental and food detections.In the case of hepatitis B virus,we will discuss host factors related to disease,diagnosis,therapy,and vaccine improvement.On hepatitis C virus,we will focus on pathogenesis,immune response,direct action antivirals treatment in the context of solid organ transplantation,issues related to hepatocellular carcinoma development,direct action antivirals resistance due to selection of resistanceassociated variants,and vaccination.Regarding hepatitis D virus,we describe diagnostic methodology,pathogenesis,and therapy.Finally,for hepatitis E virus,we will address epidemiology(including new emerging species),diagnosis,clinical aspects,treatment,the development of a vaccine,and environmental surveillance.展开更多
acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multi- ple ABA recep...acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multi- ple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloro- plast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RCAR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.展开更多
AIM To explore the applicability of the Asia-Pacific Association for the Study of the Liver(APASL) and European Association for the Study of the Liver(EASL) guidelines for acute-on-chronic liver failure(ACLF) in profi...AIM To explore the applicability of the Asia-Pacific Association for the Study of the Liver(APASL) and European Association for the Study of the Liver(EASL) guidelines for acute-on-chronic liver failure(ACLF) in profiling patients and determining the outcome.METHODS Patients admitted to a tertiary hospital in Singapore with acute decompensation of liver disease from January 2004to July 2014 are screened for ACLF according to the APASL and EASL criteria. The patients' data(including basic demographics, information about existing chronic liver disease, information about the acute decompensation, relevant laboratory values during admission, treatment, and outcome) are retrospectively analyzed to determine the background, precipitating factors and outcome.RESULTS A total of 458 liver patients is analyzed, and 78 patients with ACLF are identified. Sixty-three patients(80.8%) meet the APASL criteria, 64 patients(82.1%) meet the EASL criteria, and 49 patients(62.8%) fulfilled both criteria. The most common causes of acute liver injury are bacterial infections(59.0%), hepatitis B flare(29.5%), and variceal bleeding(24.4%). The common aetiologies of the underlying chronic disease included hepatitis B(43.6%), alcoholic(20.5%) and cryptogenic(11.5%) liver disease. The overall mortality rate is 61.5%. Increased age, the number of organ failures(as per CLIF-SOFA score), peak creatinine, INR, and amylase levels are associated with increased mortality or the need for liver transplantation. 14.3% of patients undergo liver transplantation with a 100% 1-year survival rate. CONCLUSION Both APASL and EASL criteria have identified ACLF patients with high three-month mortality, but those who fulfill APASL criteria alone have a better survival.展开更多
Epithelial ovarian cancer(EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biologic...Epithelial ovarian cancer(EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biological markers(mRNA and proteins biomarkers), the mortality rate of ovarian cancer remains a challenge because of its late diagnosis, which is specifically attributed to low specificities and sensitivities. Under this compulsive scenario, recent advances in expression biology have shifted in identifying and developing specific and sensitive biomarkers, such as micro RNAs(miRNAs) for cancer diagnosis and prognosis. MiRNAs are a novel class of small non-coding RNAs that deregulate gene expression at the posttranscriptional level, either by translational repression or by mRNA degradation. These mechanisms may be involved in a complex cascade of cellular events associated with the pathophysiology of many types of cancer. MiRNAs are easily detectable in tissue and blood samples of cancer patients. Therefore, miRNAs hold good promise as potential biomarkers in ovarian cancer. In this review, we attempted to provide a comprehensive profile of key miRNAs involved in ovarian carcinoma to establish mi RNAs as more reliable non-invasive clinical biomarkers for early detection of ovarian cancer compared with protein and DNA biomarkers.展开更多
The discovery of intrinsically disordered proteins (IDP) (i.e., biologically active proteins that do not possess stable secondary and/or tertiary structures) came as an unexpected surprise, as the existence of suc...The discovery of intrinsically disordered proteins (IDP) (i.e., biologically active proteins that do not possess stable secondary and/or tertiary structures) came as an unexpected surprise, as the existence of such proteins is in contradiction to the traditional "sequence →structure →function" paradigm. Accurate prediction of a protein's predisposition to be intrinsically disordered is a necessary prerequisite for the further understanding of principles and mechanisms of protein folding and function, and is a key for the elaboration of a new structural and functional hierarchy of proteins. Therefore, prediction of IDPs has attracted the attention of many researchers, and a number of prediction tools have been developed. Predictions of disorder, in turn, are playing major roles in directing laboratory experiments that are leading to the discovery of ever more disordered proteins, and thereby leading to a positive feedback loop in the investigation of these proteins. In this review of algorithms for intrinsic disorder prediction, the basic concepts of various prediction methods for IDPs are summarized, the strengths and shortcomings of many of the methods are analyzed, and the difficulties and directions of future development of IDP prediction techniques are discussed.展开更多
Although idiopathic hypogonadotropic hypogonadism (IHH) has traditionally been viewed as a life-long disease caused by a deficiency of gonadotropin-releasing hormone neurons, a portion of patients may gradually rega...Although idiopathic hypogonadotropic hypogonadism (IHH) has traditionally been viewed as a life-long disease caused by a deficiency of gonadotropin-releasing hormone neurons, a portion of patients may gradually regain normal reproductive axis function during hormonal replacement therapy. The predictive factors for potential IHH reversal are largely unknown. The aim of our study was to investigate the incidence and clinical features of IHH male patients who had reversed reproductive axis function. In this retrospective cohort study, male IHH patients were classified into a reversal group (n = 18) and a nonreversal group (n = 336). Concentration of gonadotropins and testosterone, as well as testicle sizes and sperm counts, were determined. Of 354 IHH patients, 18 (5.1%) acquired normal reproductive function during treatment. The median age for reversal was 24 years old (range 21-34 years). Compared with the nonreversal group, the reversible group had higher basal luteinizing hormone (LH) (1,0±0.7 IU 1-1 vs 0.4±0.4 IU 1-1, P 〈 0.05) and stimulated LH (28.3 ± 22.6 IU 1-1 vs 1.9 ±1.1 IU 1-1, P 〈 0.01) levels, as well as larger testicle size (5.1 ±2.6 ml vs 1.5± 0.3 ml, P〈 0.01), at the initial visit. In summary, larger testicle size and higher stimulated LH concentrations are favorite parameters for reversal. Our finding suggests that reversible patients may retain partially active reproductive axis function at initial diagnosis.展开更多
Dear editor,Lung carcinoma is responsible for the highest fatal-ity rate among cancer-related deaths globally,with lung adenocarcinoma(LADC)emerging as the prevailing sub-type.
基金Supported by Grants from National Science Council, No. NSC98-2313-B-007-005-MY3, NSC98-3112-B-007-004 and NSC98-2627-B-007-013Boost Grant of National Tsing Hua University, Taiwan
文摘AIM: To determine the number of regulatory T cells (Tregs) in gastric mucosa of patients with gastritis, peptic ulcers and gastric cancer. METHODS: This study was a retrospective analysis of gastric antrum biopsy specimens from healthy controls (n = 22) and patients with gastritis (n = 30), peptic ulcer (n = 83), or gastric cancer (n = 32). Expression of CD4, CD25 and Foxp3 was determined by immunohistochemistry in three consecutive sections per sample.RESULTS: Compared with healthy controls, there was an increased number of CD25+ and Foxp3+ cells in patients with gastritis (P = 0.004 and P = 0.008), peptic ulcer (P < 0.001 and P < 0.001), and gastric cancer (P < 0.001 and P < 0.001). The ratio of CD25+/CD4+ or Foxp3+/CD4+ cells was also significantly higher in all disease groups (P < 0.001, respectively). The number of CD4+, CD25+, and Foxp3+ cells, and the ratio of CD25+/CD4+ and Foxp3+/CD4+ cells, were associated with the histological grade of the specimens, including acute inflammation, chronic inflammation, lymphoid follicle number, and Helicobacter pylori infection. The number of CD4+, CD25+ and Foxp3+ cells, and the ratio of CD25+/CD4+ and Foxp3+/CD4+ cells, were negatively associated with intestinal metaplasia among gastritis (P < 0.001, P < 0.001, P < 0.001, P = 0.002 and P = 0.002) and peptic ulcer groups (P = 0.013, P = 0.004, P < 0.001, P = 0.040 and P = 0.003).
基金Supported by Japanese Society of Gastroenterology Research Foundation(to Nosho K)Pancreas Research Foundation of Japan(to Nosho K)+4 种基金Medical Research Encouragement Prize of The Japan Medical Association(to Nosho K)The Japan Society for the Promotion of Science Challenging Exploratory Researchgrant No.25670371(to Shinomura Y)Ono Cancer Research Foundation(to Ito M)
文摘The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum(F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6%(44/511), which was lower than that in United States cohort studies(13%). Similar to the United States studies, F. nucleatum positivityin Japanese colorectal cancers was significantly associated with microsatellite instability(MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets(i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain micro RNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. Micro RNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in colorectal cancer cells. Thus, emerging evidence may
文摘Metabolic rewiring and epigenetic remodeling,which are closely linked and reciprocally regulate each other,are among the well-known cancer hallmarks.Recent evi-dence suggests that many metabolites serve as sub-strates or cofactors of chromatin-modifying enzymes as a consequence of the translocation or spatial regional-ization of enzymes or metabolites.Various metabolic alterations and epigenetic modifications also reportedly drive immune escape or impede immunosurveillance within certain contexts,playing important roles in tumor progression.In this review,we focus on how metabolic reprogramming of tumor cells and immune cells reshapes epigenetic alterations,in particular the acety-lation and methylation of histone proteins and DNA.We also discuss other eminent metabolic modifications such as,succinylation,hydroxybutyrylation,and lacty-lation,and update the current advances in metabolism-and epigenetic modification-based therapeutic pro-spects in cancer.
文摘This guideline is established to standardize the prevention,diagnosis and antiviral therapy of chronic hepatitis B(CHB).For other treatment regimens and methods involving CHB,please refer to relevant guidelines and consensuses.The Chinese Society of Hepatology,Chinese Medical Association(CMA)and the Society of Infectious Diseases,CMA organized relevant native experts to establish this Guideline of Prevention and Treatment for Chronic Hepatitis B(1st version)in 2005,and made the first revision in 2010.In the past 5 years,great progress has been made in the native and foreign fundamental and clinical research with respect to CHB,necessitating additional revision of this guideline.
基金supported by the National Natural Science Foundation of China(31871380,32000500,32070730,32170756,32170804,81330008,81671377,81725010,81725010,81872874,81921006,81922027,81971312,81991512,82030041,82103167,82122024,82125009,82125011,82130044,91749126,91949101,91949207,92049302)the National Key Research and Development Program of China(2017YFA0506400,2018YFA0800200,2018YFA0800700,2018YFA0900200,2018YFC2000100,2018YFC2000400,2018YFE-0203700,20192ACB70002,2019YFA0802202,2020YFA0113400,2020YFA0803401,2020YFA0804000,2020YFC2002800,2020YFC-2002900,2021ZD0202401)+11 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16010100,XDA16010603,XDA16020400,XDB29020000,XDB39000000,XDB39000000,XDB39030300)the China Association for Science and Technology(2021QNRC001)the Beijing Municipal Science and Technology Commission(Z200022)the Natural Science Foundation of Shanghai(21JC1406400)the Key Programs of the Jiangxi ProvinceChina(20192ACB70002)the“Shu Guang”Project supported by the Shanghai Municipal Education Commission and Shanghai Education Development Foundation(19SG18)the Shanghai Sailing Program(22YF1434300)the Research Project of Joint Laboratory of University of Science and Technology of China and Anhui Mental Health Center(2019LH03)the Fundamental Research Funds for the Central Universities(WK2070210004)the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(YESS20210002)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2022083)。
文摘Aging is characterized by a progressive deterioration of physiological integrity,leading to impaired functional ability and ultimately increased susceptibility to death.It is a major risk factor for chronic human diseases,including cardiovascular disease,diabetes,neurological degeneration,and cancer.Therefore,the growing emphasis on “healthy aging” raises a series of important questions in life and social sciences.In recent years,there has been unprecedented progress in aging research,particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes.In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases,we review the descriptive,conceptual,and interventive aspects of the landscape of aging composed of a number of layers at the cellular,tissue,organ,organ system,and organismal levels.
基金supported by grants from the Beijing Municipal Science and Technology Committee (Z181100001318003)the National Natural Science Foundation of China (31421002, 31561143001,31630048, and 31790403)+17 种基金the National Natural Science Foundation of China (91853113 and 31872716)the National Natural Science Foundation of China (11672317)the National Natural Science Foundation of China (31871394 and 31670730)supported by grants from the National Natural Science Foundation of China (31420103916 and 31991192)the Ministry of Science and Technology of China (2017YFA0503401)supported by grants from the Ministry of Science and Technology of China (2019YFA0707000)supported by grants from the Ministry of Science and Technology of China (2019YFA0508401)the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB19000000)the Key Research Program of Frontier Sciences, CAS (QYZDY-SSW-SMC006)supported by funds from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (2017YFA0506600 and 31871309)supported by funds from the Ministry of Science and Technology of China and the National Natural Science Foundation of China (2019YFA0508403 and 31871443)supported by grants from the Ministry of Science and Technology of China (2016YFA0501902)the Science and Technology Commission of Shanghai Municipality (18JC1420500)the Shanghai Municipal Science and Technology Major Project (2019SHZDZX02)the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01)CAS (XDB19020102)supported by grants from RGC of Hong Kong (AoE-M09-12 and C6004-17G)National Key R&D Program of China (2016YFA0501903 and 2019YFA0508402)。
文摘Cells are compartmentalized by numerous membrane-enclosed organelles and membraneless compartments to ensure that a wide variety of cellular activities occur in a spatially and temporally controlled manner. The molecular mechanisms underlying the dynamics of membrane-bound organelles, such as their fusion and fission, vesicle-mediated trafficking and membrane contactmediated inter-organelle interactions, have been extensively characterized. However, the molecular details of the assembly and functions of membraneless compartments remain elusive. Mounting evidence has emerged recently that a large number of membraneless compartments, collectively called biomacromolecular condensates, are assembled via liquid-liquid phase separation(LLPS). Phase-separated condensates participate in various biological activities, including higher-order chromatin organization,gene expression, triage of misfolded or unwanted proteins for autophagic degradation, assembly of signaling clusters and actin-and microtubule-based cytoskeletal networks, asymmetric segregations of cell fate determinants and formation of pre-and post-synaptic density signaling assemblies. Biomacromolecular condensates can transition into different material states such as gel-like structures and solid aggregates. The material properties of condensates are crucial for fulfilment of their distinct functions, such as biochemical reaction centers, signaling hubs and supporting architectures. Cells have evolved multiple mechanisms to ensure that biomacromolecular condensates are assembled and disassembled in a tightly controlled manner. Aberrant phase separation and transition are causatively associated with a variety of human diseases such as neurodegenerative diseases and cancers. This review summarizes recent major progress in elucidating the roles of LLPS in various biological pathways and diseases.
文摘Background Histone deacetylase inhibitors (HDACIs) have been reported to induce apoptosis in cancer cells. The effects of trichostatin A (TSA) on gastric cancer cells have not been well characterized. This study was aimed to explore the effects and mechanisms of TSA on human gastric cancer SGC-7901 cells. Methods The cells were treated with TSA and analyzed by cell proliferation assay, Western blot, TUNEL assay, flow cytometry by fluorescein isothiocyanate (FITC) conjugated with Annexin V and PI staining, immunofluorescence analysis, analysis of subcellular fractionation, gene chips and real time polymerase chain reaction (PCR). Results TSA could inhibit cell growth and induced apoptosis in gastric cancer SGC-7901 cells through the regulation of apoptosis-related genes, such as Bcl-2, Bax and survivin. Further study indicated that the pan-caspase inhibitor z-VAD-fmk did not inhibit the apoptosis induced by TSA, and we did not observe the cleavage of poly ADP ribose polymerase (PARP) after TSA treatment too. In addition, apoptosis inducing factor (AIF) and EndoG were found to translocate from mitochondria to nucleus in the immunofluorescence assay and the Western analysis of subcellular fractionation confirmed the result of immunofluorescence assay. Conclusions The apoptosis induced by TSA in gastric cancer SGC-7901 cells involves a caspase-independent pathway.
基金Supported by Grants-in-Aid for Scientific Research from the Ministry of Education,Culture,Sports,Science and Technology of Japan,to Yamamoto H and Shinomura Y
文摘AIM:To investigate human epidermal growth factor receptor 2(HER2)-phosphatidylinositol 3-kinase(PI3K)-vAkt murine thymoma viral oncogene homolog signaling pathway.METHODS:We analyzed 231 formalin-fixed,paraffinembedded gastric cancer tissue specimens from Japanese patients who had undergone surgical treatment.The patients' age,sex,tumor location,depth of invasion,pathological type,lymph node metastasis,and pathological stage were determined by a review of the medical records.Expression of HER2 was analyzed by immunohistochemistry(IHC) using the HercepTest TM kit.Standard criteria for HER2 positivity(0,1+,2+,and 3+) were used.Tumors that scored 3+ were considered HER2-positive.Expression of phospho Akt(pAkt) was also analyzed by IHC.Tumors were considered pAkt-positive when the percentage of positive tumor cells was 10% or more.PI3K,catalytic,alpha polypeptide(PIK3CA) mutations in exons 1,9 and 20 were analyzed by pyrosequencing.Epstein-Barr virus(EBV) infection was analyzed by in situ hybridization targeting EBV-encoded small RNA(EBER) with an EBER-RNA probe.Microsatellite instability(MSI) was analyzed by polymerase chain reaction using the mononucleotide markers BAT25 and BAT26.RESULTS:HER2 expression levels of 0,1+,2+ and 3+ were found in 167(72%),32(14%),12(5%) and 20(8.7%) samples,respectively.HER2 overexpression(IHC 3+) significantly correlated with intestinal histological type(15/20 vs 98 /205,P = 0.05).PIK3CA mutations were present in 20 cases(8.7%) and significantly correlated with MSI(10/20 vs 9/211,P < 0.01).The mutation frequency was high(21%) in T4 cancers and very low(6%) in T2 cancers.Mutations in exons 1,9 and 20 were detected in 5(2%),9(4%) and 7(3%) cases,respectively.Two new types of PIK3CA mutation,R88Q and R108H,were found in exon1.All PIK3CA mutations were heterozygous missense singlebase substitutions,the most common being H1047R(6/20,30%) in exon20.Eighteen cancers(8%) were EBV-positive and this positivity significantly correlated with a diffuse histological type(13/18 vs 93/198,P = 0.04).T
文摘The changes associated with malignancy are not only in cancer cells but also in environment in which cancer cells live.Metabolic reprogramming supports tumor cells’high demand of biogenesis for their rapid proliferation,and helps tumor cells to survive under certain genetic or environmental stresses.Emerging evidence suggests that metabolic alteration is ultimately and tightly associated with genetic changes,in particular the dysregulation of key oncogenic and tumor suppressive signaling pathways.Cancer cells activate HIF signaling even in the presence of oxygen and in the absence of growth factor stimulation.This cancer metabolic phenotype,described firstly by German physiologist Otto Warburg,ensures enhanced glycolytic metabolism for the biosynthesis of macromolecules.The conception of metabolite signaling,i.e.,metabolites are regulators of cell signaling,provides novel insights into how reactive oxygen species(ROS)and other metabolites deregulation may regulate redox homeostasis,epigenetics,and proliferation of cancer cells.Moreover,the unveiling of noncanonical functions of metabolic enzymes,such as the moonlighting functions of phosphoglycerate kinase 1(PGK1),reassures the importance of metabolism in cancer development.The metabolic,microRNAs,and ncRNAs alterations in cancer cells can be sorted and delivered either to intercellular matrix or to cancer adjacent cells to shape cancer microenvironment via media such as exosome.Among them,cancer microenvironmental cells are immune cells which exert profound effects on cancer cells.Understanding of all these processes is a prerequisite for the development of a more effective strategy to contain cancers.
基金supported by grants from the National Institute of Dental and Craniofacial Research, NIH (supported by R01 DE026339)
文摘Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells(MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and repair. Abnormal function of osteogenic cells or diminished MSCs within the cranial suture can lead to skull defects, such as craniosynostosis. Despite the important function of each of these cell types within the cranial suture, we have limited knowledge about the role that crosstalk between them may play in regulating calvarial bone homeostasis and injury repair. Here we show that suture MSCs give rise to osteoprogenitors that show active bone morphogenetic protein(BMP) signalling and depend on BMP-mediated Indian hedgehog(IHH) signalling to balance osteogenesis and osteoclastogenesis activity. IHH signalling and receptor activator of nuclear factor kappa-Β ligand(RANKL) may function synergistically to promote the differentiation and resorption activity of osteoclasts. Loss of Bmpr1a in MSCs leads to downregulation of hedgehog(Hh) signalling and diminished cranial sutures. Significantly, activation of Hh signalling partially restores suture morphology in Bmpr1a mutant mice, suggesting the functional importance of BMP-mediated Hh signalling in regulating suture tissue homeostasis. Furthermore, there is an increased number of CD200+ cells in Bmpr1a mutant mice, which may also contribute to the inhibited osteoclast activity in the sutures of mutant mice. Finally, suture MSCs require BMPmediated Hh signalling during the repair of calvarial bone defects after injury. Collectively, our studies reveal the molecular and cellular mechanisms governing cell–cell interactions within the cranial suture that regulate calvarial bone homeostasis and repair.
基金supported by the "Strategic Priority Research Program of the Chinese Academy of Sciences" (XDA01030000)the key Research Program of the Chinese Academy of Sciences (ZDRW-ZS-2016-2)+3 种基金the National Natural Science Foundation of China (81572131, 81571213)the Natural Science Foundation of Jiangsu Province (BL2012004, BK20151210)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe key Research and Development Program of Ministry of Science and Technology (2016YFC1101500)
文摘Traumatic spinal cord injury(SCI) is a major challenge in the clinic. In this study, we sought to examine the synergistic effects of linear ordered collagen scaffold(LOCS) and human placenta-derived mesenchymal stem cells(hPMSCs) when transplanted into completely transected beagle dogs. After 36 weeks observation, we found that LOCS+hPMSCs implants promoted better hindlimb locomotor recovery than was observed in the non-treatment(control) group and LOCS group. Histological analysis showed that the regenerated tissue after treatment was well integrated with the host tissue, and dramatically reduced the volume of cystic and chondroitin sulfate proteoglycans(CSPGs) expression. Furthermore, the LOCS+hPMSCs group also showed more neuron-specific βIII-tubulin(Tuj-1)-and NeuN-positive neurons in the lesion area, as well as axonal regeneration, remyelination and synapse formation in the lesion site. Additionally, dogs in the LOCS+hPMSCs group experienced enhanced sprouting of both ascending(CGRP-positive) sensory fibers and descending(5-HT-and TH-positive) motor fibers at the lesion area. All these data together suggested that the combined treatment had beneficial effects on neuronal regeneration and functional improvement in a canine complete transection model. Therefore, LOCS+hPMSCs implantation holds a great promise for bridging the nerve defect and may be clinically useful in the near future.
文摘Natural peroxisome proliferator-activated receptor-γ(PPAR-γ) agonists are found in food and may be important for health through their anti-inflammatory properties. Curcumin(Cur) is a bright yellow spice, derived from the rhizome of Curcuma longa Linn. It has been shown to have many biological properties that appear to operate through diverse mechanisms. Some of these potentially beneficial effects of Cur are due to activation of the nuclear transcription factor PPAR-γ. It is reported(using in vitro and in vivo models) that Cur plays a potential role against several diseases. In this review article, we present the current literature on the effects of Cur on the modulation of inflammatory processes that are mediated through PPAR-γ.
文摘Viral hepatitis,secondary to infection with hepatitis A,B,C,D,and E viruses,are a major public health problem and an important cause of morbidity and mortality.Despite the huge medical advances achieved in recent years,there are still points of conflict concerning the pathogenesis,immune response,development of new and more effective vaccines,therapies,and treatment.This review focuses on the most important research topics that deal with issues that are currently being solved,those that remain to be solved,and future research directions.For hepatitis A virus we will address epidemiology,molecular surveillance,new susceptible populations as well as environmental and food detections.In the case of hepatitis B virus,we will discuss host factors related to disease,diagnosis,therapy,and vaccine improvement.On hepatitis C virus,we will focus on pathogenesis,immune response,direct action antivirals treatment in the context of solid organ transplantation,issues related to hepatocellular carcinoma development,direct action antivirals resistance due to selection of resistanceassociated variants,and vaccination.Regarding hepatitis D virus,we describe diagnostic methodology,pathogenesis,and therapy.Finally,for hepatitis E virus,we will address epidemiology(including new emerging species),diagnosis,clinical aspects,treatment,the development of a vaccine,and environmental surveillance.
基金supported by USDA-ARS National Program NP301 project "Response of Diverse Rice Germplasm to Biotic and Abiotic Stresses Project No. 6225-21000-008-00D"
文摘acid (ABA) is the key plant stress hormone. Consistent with the earlier studies in support of the presence of both membrane- and cytoplasm-localized ABA receptors, recent studies have identified multi- ple ABA receptors located in various subcellular locations. These include a chloroplast envelope-localized receptor (the H subunit of Chloro- plast Mg2+-chelatase/ABA Receptor), two plasma membrane-localized receptors (G-protein Coupled Receptor 2 and GPCR-type G proteins), and one cytosol/nucleus-localized Pyrabactin Resistant (PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor 1 (RCAR). Although the downstream molecular events for most of the identified ABA receptors are currently unknown, one of them, PYR/PYL/RCAR was found to directly bind and regulate the activity of a long-known central regulator of ABA signaling, the A-group protein phosphatase 2C (PP2C). Together with the Sucrose Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases, a central signaling complex (ABA-PYR-PP2Cs-SnRK2s) that is responsible for ABA signal perception and transduction is supported by abundant genetic, physiological, biochemical and structural evidence. The identification of multiple ABA receptors has advanced our understanding of ABA signal perception and transduction while adding an extra layer of complexity.
文摘AIM To explore the applicability of the Asia-Pacific Association for the Study of the Liver(APASL) and European Association for the Study of the Liver(EASL) guidelines for acute-on-chronic liver failure(ACLF) in profiling patients and determining the outcome.METHODS Patients admitted to a tertiary hospital in Singapore with acute decompensation of liver disease from January 2004to July 2014 are screened for ACLF according to the APASL and EASL criteria. The patients' data(including basic demographics, information about existing chronic liver disease, information about the acute decompensation, relevant laboratory values during admission, treatment, and outcome) are retrospectively analyzed to determine the background, precipitating factors and outcome.RESULTS A total of 458 liver patients is analyzed, and 78 patients with ACLF are identified. Sixty-three patients(80.8%) meet the APASL criteria, 64 patients(82.1%) meet the EASL criteria, and 49 patients(62.8%) fulfilled both criteria. The most common causes of acute liver injury are bacterial infections(59.0%), hepatitis B flare(29.5%), and variceal bleeding(24.4%). The common aetiologies of the underlying chronic disease included hepatitis B(43.6%), alcoholic(20.5%) and cryptogenic(11.5%) liver disease. The overall mortality rate is 61.5%. Increased age, the number of organ failures(as per CLIF-SOFA score), peak creatinine, INR, and amylase levels are associated with increased mortality or the need for liver transplantation. 14.3% of patients undergo liver transplantation with a 100% 1-year survival rate. CONCLUSION Both APASL and EASL criteria have identified ACLF patients with high three-month mortality, but those who fulfill APASL criteria alone have a better survival.
基金the ICMR New Delhi for financial support (Grant No. 3/2/2/136/2012/NCD-Ⅲ)
文摘Epithelial ovarian cancer(EOC) is the leading cause of death among all gynecological malignancies. Despite the technological and medical advances over the past four decades, such as the development of several biological markers(mRNA and proteins biomarkers), the mortality rate of ovarian cancer remains a challenge because of its late diagnosis, which is specifically attributed to low specificities and sensitivities. Under this compulsive scenario, recent advances in expression biology have shifted in identifying and developing specific and sensitive biomarkers, such as micro RNAs(miRNAs) for cancer diagnosis and prognosis. MiRNAs are a novel class of small non-coding RNAs that deregulate gene expression at the posttranscriptional level, either by translational repression or by mRNA degradation. These mechanisms may be involved in a complex cascade of cellular events associated with the pathophysiology of many types of cancer. MiRNAs are easily detectable in tissue and blood samples of cancer patients. Therefore, miRNAs hold good promise as potential biomarkers in ovarian cancer. In this review, we attempted to provide a comprehensive profile of key miRNAs involved in ovarian carcinoma to establish mi RNAs as more reliable non-invasive clinical biomarkers for early detection of ovarian cancer compared with protein and DNA biomarkers.
文摘The discovery of intrinsically disordered proteins (IDP) (i.e., biologically active proteins that do not possess stable secondary and/or tertiary structures) came as an unexpected surprise, as the existence of such proteins is in contradiction to the traditional "sequence →structure →function" paradigm. Accurate prediction of a protein's predisposition to be intrinsically disordered is a necessary prerequisite for the further understanding of principles and mechanisms of protein folding and function, and is a key for the elaboration of a new structural and functional hierarchy of proteins. Therefore, prediction of IDPs has attracted the attention of many researchers, and a number of prediction tools have been developed. Predictions of disorder, in turn, are playing major roles in directing laboratory experiments that are leading to the discovery of ever more disordered proteins, and thereby leading to a positive feedback loop in the investigation of these proteins. In this review of algorithms for intrinsic disorder prediction, the basic concepts of various prediction methods for IDPs are summarized, the strengths and shortcomings of many of the methods are analyzed, and the difficulties and directions of future development of IDP prediction techniques are discussed.
文摘Although idiopathic hypogonadotropic hypogonadism (IHH) has traditionally been viewed as a life-long disease caused by a deficiency of gonadotropin-releasing hormone neurons, a portion of patients may gradually regain normal reproductive axis function during hormonal replacement therapy. The predictive factors for potential IHH reversal are largely unknown. The aim of our study was to investigate the incidence and clinical features of IHH male patients who had reversed reproductive axis function. In this retrospective cohort study, male IHH patients were classified into a reversal group (n = 18) and a nonreversal group (n = 336). Concentration of gonadotropins and testosterone, as well as testicle sizes and sperm counts, were determined. Of 354 IHH patients, 18 (5.1%) acquired normal reproductive function during treatment. The median age for reversal was 24 years old (range 21-34 years). Compared with the nonreversal group, the reversible group had higher basal luteinizing hormone (LH) (1,0±0.7 IU 1-1 vs 0.4±0.4 IU 1-1, P 〈 0.05) and stimulated LH (28.3 ± 22.6 IU 1-1 vs 1.9 ±1.1 IU 1-1, P 〈 0.01) levels, as well as larger testicle size (5.1 ±2.6 ml vs 1.5± 0.3 ml, P〈 0.01), at the initial visit. In summary, larger testicle size and higher stimulated LH concentrations are favorite parameters for reversal. Our finding suggests that reversible patients may retain partially active reproductive axis function at initial diagnosis.
基金This research was supported in part by the Japan Agency for Medical Research and Development(AMED)(JP15ck0106096 to TK)Japan Science and Tech-nology Agency(JST)Core Research for Evolutionary Science and Technology(JPMJCR1689 to RH)+5 种基金Artifi-cial Intelligence,Big Data,IoT,Cyber Security Integration Project of the Public/Private R&D Investment Strategic Expansion Program(JPMJCR18Y4 to RH)the Japan Soci-ety for the Promotion of Science(JSPS)Grant-in-Aid for Scientific Research(S)(17H06162 to HN),Grant-in-Aid for Scientific Research(B)(20H03695 to KS),Grants-in-Aid for the Tailor-Made Medical Treatment Program(BioBank Japan Project)from the Japanese Ministry of Education,Culture,Sports,ScienceandTechnology(MEXT),Princess Takamatsu Cancer Research Fund,and National Cancer Center Research and Development Fund(NCC Biobank and NCC Core Facility).The J-MICC study was supported by Grants-in-Aid for Scientific Research for Priority Areas of Cancer(No.17015018 to KW)Innovative Areas(No.221S0001 to KW)from MEXTby JSPS Grant-in-Aid for Scientific Research Grant(No.16H06277[CoBiA])The JPHC Study was supported by National Cancer Center Research and Development Fund since 2011(latest grant number:2020-J4)and a Grant-in-Aid for Cancer Research from the Ministry of Health,Labor and Welfare of Japan(1989-2010).ToMMoissupportedinpartbyMEXT-JSTand AMED(most recent grant numbers:JP20km0105001 and JP20km0105002)Iwate Tohoku Medical Megabank Orga-nization(Iwate Medical University)is supported in part by MEXT-JST and AMED(most recent grant numbers:JP20km0105003 and JP20km0105004).
文摘Dear editor,Lung carcinoma is responsible for the highest fatal-ity rate among cancer-related deaths globally,with lung adenocarcinoma(LADC)emerging as the prevailing sub-type.