Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exh...Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe exhibit high sensitivity and tunable responsivity to visible light. However, the device yield and repeatability call for further improvement to achieve large-scale uniformity. Here, we report a layer-by-layer growth of wafer-scale GaTe with a high hole mobility of 28.4 cm^2/(V.s) by molecular beam epitaxy. The arrayed p-n )unctions were developed by growing few-layer GaTe directly on fhree-inch Si wafers. The resultant diodes reveal good rectifying characteristics and a high photovoltaic external quantum efficiency up to 62% at 4.8 μW under zero bias. The photocurrent reaches saturation fast enough to capture a time constant of 22 μs and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photoimages were acquired by the GaTe/Si photodiodes with reasonable contrast and spatial resolution, demonstrating the potential of integrating the 2D materials with silicon technology for novel optoelectronic devices.展开更多
Bacterial infectious diseases are one of the leading causes of death worldwide.Even with the use of multiple antibiotic treatment strategies,4.95 million people died from drug-resistant bacterial infections in 2019.By...Bacterial infectious diseases are one of the leading causes of death worldwide.Even with the use of multiple antibiotic treatment strategies,4.95 million people died from drug-resistant bacterial infections in 2019.By 2050,the number of deaths will reach 10 milion annually.The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment,such as drug-resistant bacteria,biofilms,persister cells,intracellular bacteria,and small colony variants.In addition,the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the longterm treatment of chronic bacterial infections.The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells.Therefore,there is an urgent need for effective alternatives to treat bacterial infections.Accordingly,the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest;however,a comprehensive review of their research progress is lacking.In this review,we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection.First,we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections.Then,we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages.Moreover,we discuss biomaterial-mediated bacterial vaccines'potential applications and challenges for activating innate and adaptive immune memory.This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.展开更多
Bacterial infections are a major cause of chronic infections.Thus,antibacterial material is an urgent need in clinics.Antibacterial nanofibers,with expansive surface area,enable efficient incorporation of antibacteria...Bacterial infections are a major cause of chronic infections.Thus,antibacterial material is an urgent need in clinics.Antibacterial nanofibers,with expansive surface area,enable efficient incorporation of antibacterial agents.Meanwhile,structure similar to the extracellular matrix can accelerate cell growth.Electrospinning,the most widely used technique to fabricate nanofiber,is often used in many biomedical applications including drug delivery,regenerative medicine,wound healing and so on.Thus,this review provides an overview of all recently published studies on the development of electrospun antibacterial nanofibers in wound dressings and tissue me-dicinal fields.This reviewer begins with a brief introduction of electrospinning process and then discusses electrospun fibers by incorporating various types of antimicrobial agents used as in wound dressings and tissue.Finally,we finish with conclusions and further perspectives on electrospun antibacterial nanofibers as 2D biomedicine materials.展开更多
By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from ...By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.展开更多
Comparison between filter pressing and isostatic pressing for submicrometer alumina powder has been systematically made. Obvious improvements in true porosity, sintering behaviour, and microstructure of green compacts...Comparison between filter pressing and isostatic pressing for submicrometer alumina powder has been systematically made. Obvious improvements in true porosity, sintering behaviour, and microstructure of green compacts without cracking and in agglomeration of final ceramics have been achieved.展开更多
基金This work was supported by the National Young 1000 Talent Plan, Pujiang Talent Plan in Shanghai, National Natural Science Foundation of China (Nos. 61322407, 11474058, and 11322441), the Chinese Na- tional Science Fund for Talent Training in Basic Science (No. J1103204), and Ten Thousand Talents Program for young talents. Part of the sample fabrication was performed at Fudan Nano-fabrication Laboratory. We acknowledge Yuanbo Zhang, Yizheng Wu, Zuimin Jiang, Likai Li, Boliang Chen for great assistance during the device fabrication and measurements.
文摘Two-dimensional (2D) materials have attracted substantial attention in electronic and optoelectronic applications with the superior advantages of being flexible, transparent, and highly tunable. Gapless graphene exhibits ultra-broadband and fast photoresponse while the 2D semiconducting MoS2 and GaTe exhibit high sensitivity and tunable responsivity to visible light. However, the device yield and repeatability call for further improvement to achieve large-scale uniformity. Here, we report a layer-by-layer growth of wafer-scale GaTe with a high hole mobility of 28.4 cm^2/(V.s) by molecular beam epitaxy. The arrayed p-n )unctions were developed by growing few-layer GaTe directly on fhree-inch Si wafers. The resultant diodes reveal good rectifying characteristics and a high photovoltaic external quantum efficiency up to 62% at 4.8 μW under zero bias. The photocurrent reaches saturation fast enough to capture a time constant of 22 μs and shows no sign of device degradation after 1.37 million cycles of operation. Most strikingly, such high performance has been achieved across the entire wafer, making the volume production of devices accessible. Finally, several photoimages were acquired by the GaTe/Si photodiodes with reasonable contrast and spatial resolution, demonstrating the potential of integrating the 2D materials with silicon technology for novel optoelectronic devices.
基金National Natural Science Foundation of China(grant nos.32222042,82225031,82172464,82172453,and 81972086)Shanghai Rising-Star Pro-gram(21QA1405500)Program of Shanghai Excellent Academic Leader(grant no.22XD1401900).
文摘Bacterial infectious diseases are one of the leading causes of death worldwide.Even with the use of multiple antibiotic treatment strategies,4.95 million people died from drug-resistant bacterial infections in 2019.By 2050,the number of deaths will reach 10 milion annually.The increasing mortality may be partly due to bacterial heterogeneity in the infection microenvironment,such as drug-resistant bacteria,biofilms,persister cells,intracellular bacteria,and small colony variants.In addition,the complexity of the immune microenvironment at different stages of infection makes biomaterials with direct antimicrobial activity unsatisfactory for the longterm treatment of chronic bacterial infections.The increasing mortality may be partly attributed to the biomaterials failing to modulate the active antimicrobial action of immune cells.Therefore,there is an urgent need for effective alternatives to treat bacterial infections.Accordingly,the development of immunomodulatory antimicrobial biomaterials has recently received considerable interest;however,a comprehensive review of their research progress is lacking.In this review,we focus mainly on the research progress and future perspectives of immunomodulatory antimicrobial biomaterials used at different stages of infection.First,we describe the characteristics of the immune microenvironment in the acute and chronic phases of bacterial infections.Then,we highlight the immunomodulatory strategies for antimicrobial biomaterials at different stages of infection and their corresponding advantages and disadvantages.Moreover,we discuss biomaterial-mediated bacterial vaccines'potential applications and challenges for activating innate and adaptive immune memory.This review will serve as a reference for future studies to develop next-generation immunomodulatory biomaterials and accelerate their translation into clinical practice.
基金supported by the National Natural Science Foundation of China(Project No.51573103,No.21274094)2019 Foundation Research fostering project 21 and postdoctoral fund(2019SCU12007)from SiChuan University
文摘Bacterial infections are a major cause of chronic infections.Thus,antibacterial material is an urgent need in clinics.Antibacterial nanofibers,with expansive surface area,enable efficient incorporation of antibacterial agents.Meanwhile,structure similar to the extracellular matrix can accelerate cell growth.Electrospinning,the most widely used technique to fabricate nanofiber,is often used in many biomedical applications including drug delivery,regenerative medicine,wound healing and so on.Thus,this review provides an overview of all recently published studies on the development of electrospun antibacterial nanofibers in wound dressings and tissue me-dicinal fields.This reviewer begins with a brief introduction of electrospinning process and then discusses electrospun fibers by incorporating various types of antimicrobial agents used as in wound dressings and tissue.Finally,we finish with conclusions and further perspectives on electrospun antibacterial nanofibers as 2D biomedicine materials.
基金This work was supported by the National Natural Science Foundation of China under grant No.50075053the Emphasized Item of Development Funds of Science and Technology of Shanghai City,China(No.03H201).
文摘By combining the α/γ interface migration and the carbon diffusion at the interface in Fe-C alloys, a mathematical model is constructed to describe the mixed-control mechanism for proeutectoid ferrite formation from austenite. In this model, the α/γ interface is treated as non-equilibrium interface, i.e., the carbon concentration of austenite at γ/α interface is obtained through theoretical calculation, instead of that assumed as the local equilibrium concentration. For isothermal precipitation of ferrite in Fe-C alloys, the calculated results show that the rate of interface migration decreases monotonically during the whole process, while the rate of carbon diffusion from γ/α interface into austenite increases to a peak value and then decreases. The process of ferrite growth may be considered as composed of three stages: the period of rapid growth, slow growth and finishing stage. The results also show that the carbon concentration of austenite at γ/α interface could not reach the thermodynamic equilibrium value even at the last stage of ferrite growth.
文摘Comparison between filter pressing and isostatic pressing for submicrometer alumina powder has been systematically made. Obvious improvements in true porosity, sintering behaviour, and microstructure of green compacts without cracking and in agglomeration of final ceramics have been achieved.