An online algorithm for training LS-SVM (Least Square Support VectorMachines) was proposed for the application of function estimation and classification. Online LS-SVMmeans that LS-SVM can be trained in an incremental...An online algorithm for training LS-SVM (Least Square Support VectorMachines) was proposed for the application of function estimation and classification. Online LS-SVMmeans that LS-SVM can be trained in an incremental way, and can be pruned to get sparseapproximation in a decremental way. When a SV (Support Vector) is added or removed, the onlinealgorithm avoids computing large-scale matrix inverse. Thus the computation cost is reduced. Onlinealgorithm is especially useful to realistic function estimation problem such as systemidentification. The experiments with benchmark function estimation problem and classificationproblem show the validity of this online algorithm.展开更多
基金This project was financially supported by the National Natural Science Foundation of China (No. 69889050)
文摘An online algorithm for training LS-SVM (Least Square Support VectorMachines) was proposed for the application of function estimation and classification. Online LS-SVMmeans that LS-SVM can be trained in an incremental way, and can be pruned to get sparseapproximation in a decremental way. When a SV (Support Vector) is added or removed, the onlinealgorithm avoids computing large-scale matrix inverse. Thus the computation cost is reduced. Onlinealgorithm is especially useful to realistic function estimation problem such as systemidentification. The experiments with benchmark function estimation problem and classificationproblem show the validity of this online algorithm.