In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be rep...In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.展开更多
In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting wh...In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.展开更多
The Giant Radio Array for Neutrino Detection(GRAND)is a planned large-scale observatory of ultra-high-energy(UHE)cosmic particles,with energies exceeding 10~8 Ge V.Its goal is to solve the long-standing mystery of the...The Giant Radio Array for Neutrino Detection(GRAND)is a planned large-scale observatory of ultra-high-energy(UHE)cosmic particles,with energies exceeding 10~8 Ge V.Its goal is to solve the long-standing mystery of the origin of UHE cosmic rays.To do this,GRAND will detect an unprecedented number of UHE cosmic rays and search for the undiscovered UHE neutrinos and gamma rays associated to them with unmatched sensitivity.GRAND will use large arrays of antennas to detect the radio emission coming from extensive air showers initiated by UHE particles in the atmosphere.Its design is modular:20 separate,independent sub-arrays,each of 10000 radio antennas deployed over 10000 km^2.A staged construction plan will validate key detection techniques while achieving important science goals early.Here we present the science goals,detection strategy,preliminary design,performance goals,and construction plans for GRAND.展开更多
基金support from ERC Starting (Grant No. 639217 CSINEUTRONSTAR)support from a Netherlands Organization for Scientific Research (NWO) Vidi Fellowship+2 种基金suported by the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Global Fellowship (Grant No. 703916)supported in part by the DFG through Grant SFB 1245 and the ERC (Grant No. 307986 STRONGINT)support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)
文摘In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry(eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Sciences, the eXTP mission is expected to be launched in the mid 2020 s.
基金supported by the Royal Society,ERC Starting(Grant No.639217)he European Union Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Global Fellowship(Grant No.703916)+10 种基金the National Natural Science Foundation of China(Grant Nos.11233001,11773014,11633007,11403074,11333005,11503008,and 11590781)the National Basic Research Program of China(Grant No.2015CB857100)NASA(Grant No.NNX13AD28A)an ARC Future Fellowship(Grant No.FT120100363)the National Science Foundation(Grant No.PHY-1430152)the Spanish MINECO(Grant No.AYA2016-76012-C3-1-P)the ICCUB(Unidad de Excelencia’Maria de Maeztu’)(Grant No.MDM-2014-0369)EU’s Horizon Programme through a Marie Sklodowska-Curie Fellowship(Grant No.702638)the Polish National Science Center(Grant Nos.2015/17/B/ST9/03422,2015/18/M/ST9/00541,2013/10/M/ST9/00729,and 2015/18/A/ST9/00746)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA15020100)the NWO Veni Fellowship(Grant No.639.041.647)
文摘In this White Paper we present the potential of the enhanced X-ray Timing and Polarimetry(eXTP) mission for studies related to Observatory Science targets. These include flaring stars, supernova remnants, accreting white dwarfs, low and high mass X-ray binaries, radio quiet and radio loud active galactic nuclei, tidal disruption events, and gamma-ray bursts. eXTP will be excellently suited to study one common aspect of these objects: their often transient nature. Developed by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.
基金The GRAND project is supported by the APACHE of the French Agence Nationale de la Recherche(Grant No.ANR-16-CE31-0001)the FranceChina Particle Physics Laboratory,the China Exchange Program from the Royal Netherlands Academy of Arts and Sciences and the Chinese Academy of Sciences+15 种基金the Key Projects of Frontier Science of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH022)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB23000000)the National Key R&D Program of China(Grant No.2018YFA0404601)supported by Sao Paulo Research Foundation(FAPESP)(Grant No.2017/12828-4)partially supported from National Science Foundation(Grant Nos.PHY-1404311,and PHY-1714479)supported by Danish National Research Foundation(DNRF91)Danmarks Grundforskningsfond(Grant No.1041811001)Villum Fonden(Grant No.13164)Washington Carvalho Jr.is supported by Sao Paulo Research Foundation(FAPESP)(Grant No.2015/15735-1)supported by the National Natural Science Foundation of China(Grant No.11375209)supported by the Flemish Foundation for Scientific Research(Grant No.FWO-12L3715N–K.D.de Vries)supported by the Netherlands Organisation for Scientific Research(NWO)supported by the Key Projects of Frontier Science of Chinese Academy of Sciences,(Grant No.QYZDY-SSWSLH022)the Strategic Priority Research Program of Chinese Academy of Sciences,(Grant No.XDB23000000)supported by the National Natural Science Foundation of China(Grant No.11505213)“Data analysis for radio detection array at 21CMA base”
文摘The Giant Radio Array for Neutrino Detection(GRAND)is a planned large-scale observatory of ultra-high-energy(UHE)cosmic particles,with energies exceeding 10~8 Ge V.Its goal is to solve the long-standing mystery of the origin of UHE cosmic rays.To do this,GRAND will detect an unprecedented number of UHE cosmic rays and search for the undiscovered UHE neutrinos and gamma rays associated to them with unmatched sensitivity.GRAND will use large arrays of antennas to detect the radio emission coming from extensive air showers initiated by UHE particles in the atmosphere.Its design is modular:20 separate,independent sub-arrays,each of 10000 radio antennas deployed over 10000 km^2.A staged construction plan will validate key detection techniques while achieving important science goals early.Here we present the science goals,detection strategy,preliminary design,performance goals,and construction plans for GRAND.