Using Landsat TM data of 1988, 1998 and 2001, the dynamic process of the spatial-temporal characteristics of land use changes during 13 years from 1988 to 2001 in the special economic zone of Xiamen, China was analyze...Using Landsat TM data of 1988, 1998 and 2001, the dynamic process of the spatial-temporal characteristics of land use changes during 13 years from 1988 to 2001 in the special economic zone of Xiamen, China was analyzed to improve understanding and to find the driving forces of land use change so that sustainable land utilization could be practiced. During the 13 years cropland decreased remarkably by nearly 11304.95 ha. The areas of rural-urban construction and water body increased by 10 152.24 ha and 848.94 ha, respectively. From 1988 to 2001, 52.5% of the lost cropland was converted into rural-urban industrial land. Rapid urbanization contributed to a great change in the rate of cropland land use during these years. Land-reclamation also contributed to a decrease in water body area as well as marine ecological and environmental destruction. In the study area 1) urbanization and industrialization, 2) infrastructure and agricultural intensification, 3) increased affluence of the farming community, and 4) policy factors have driven the land use changes. Possible sustainable land use measures included construction of a land management system, land planning, development of potential land resources, new technology applications, and marine ecological and environmental protection.展开更多
Stress sensing is the basis of human-machine interface,biomedical engineering,and mechanical structure detection systems.Stress sensing based on mechanoluminescence(ML)shows significant advantages of distributed detec...Stress sensing is the basis of human-machine interface,biomedical engineering,and mechanical structure detection systems.Stress sensing based on mechanoluminescence(ML)shows significant advantages of distributed detection and remote response to mechanical stimuli and is thus expected to be a key technology of next-generation tactile sensors and stress recorders.However,the instantaneous photon emission in ML materials generally requires real-time recording with a photodetector,thus limiting their application fields to real-time stress sensing.In this paper,we report a force-induced charge carrier storage(FICS)effect in deep-trap ML materials,which enables storage of the applied mechanical energy in deep traps and then release of the stored energy as photon emission under thermal stimulation.The FICS effect was confirmed in five ML materials with piezoelectric structures,efficient emission centres and deep trap distributions,and its mechanism was investigated through detailed spectroscopic characterizations.Furthermore,we demonstrated three applications of the FICS effect in electronic signature recording,falling point monitoring and vehicle collision recording,which exhibited outstanding advantages of distributed recording,longterm storage,and no need for a continuous power supply.The FICS effect reported in this paper provides not only a breakthrough for ML materials in the field of stress recording but also a new idea for developing mechanical energy storage and conversion systems.展开更多
Optimization of a process for extracting astaxanthin from Phaffia rhodozyma by acidic method was investigated, regarding several extraction factors such as acids, organic solvents, temperature and time. Fractional fac...Optimization of a process for extracting astaxanthin from Phaffia rhodozyma by acidic method was investigated, regarding several extraction factors such as acids, organic solvents, temperature and time. Fractional factorial design, central composite design and response surface methodology were used to derive a statistically optimal model, which corresponded to the following optimal condition: concentration of lactic acid at 5.55 mol/L, ratio of ethanol to yeast dry weight at 20.25 ml/g, temperature for cell-disruption at 30 ℃, and extraction time for 3 min. Under this condition, astaxanthin and the total carotenoids could be extracted in amounts of 1294.7 μg/g and 1516.0 μg/g, respectively. This acidic method has advantages such as high extraction efficiency, low chemical toxicity and no special requirement of instruments. Therefore, it might be a more feasible and practical method for industrial practice.展开更多
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ...This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.展开更多
Effective collection,recognition,and analysis of sports information is the key to intelligent sports,which can help athletes to improve their skills and formulate scientific training plans and competition strategies.A...Effective collection,recognition,and analysis of sports information is the key to intelligent sports,which can help athletes to improve their skills and formulate scientific training plans and competition strategies.At present,wearable electronic devices used for movement monitoring still have some limitations,such as high cost and energy consumption,incompatibility of suitable flexibility and personalized spatial structure,dissatisfactory data analysis methods,etc.In this work,a novel three-dimensionalprinted thermoplastic polyurethane is introduced as the elastic shell and friction layer,and it endows the proposed customizable and flexible triboelectric nanogenerator(CF-TENG)with personalized spatial structure and robust correlation to external pressure.In practical application,it exhibits highly sensitive responses to the joint-bending motion of the finger,wrist,or elbow.Furthermore,a pressure-sensing insole and smart ski pole based on CF-TENG are manufactured to build a comprehensive sports monitoring system to transmit the athletes’motion information from feet and hands through the plantar pressure distribution and ski pole action.To recognize the movement status,the self-developed automatic peak recognition algorithm(P-Find)and machine learning algorithm(subspace K-Nearest Neighbors)were introduced to accurately distinguish the four typical motion behaviors and three primary sub-techniques of cross-country skiing,with accuracy rates of 98.2%and 100%.This work provides a novel strategy to promote the personalized applications of TENGs in intelligent sports.展开更多
Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for...Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).展开更多
The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while...The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coa展开更多
Simple sequence repeat (SSR) markers were obtained for the large yellow croaker Pseudosciaena crocea using 1 205 expressed sequences tags (ESTs) from the NCBI database.Primers for 48 ESTSSR loci were designed and ...Simple sequence repeat (SSR) markers were obtained for the large yellow croaker Pseudosciaena crocea using 1 205 expressed sequences tags (ESTs) from the NCBI database.Primers for 48 ESTSSR loci were designed and screened with 30 P.crocea specimens captured from Guanjingyang sea area in Fujian Province of China.Sixteen of the loci were polymorphic,which were amplified with 3 to 11 alleles per locus and the mean of 6.13.The observed and expected heterozygosity per locus ranged from 0.091 to 0.844 (mean 0.544) and from 0.118 to 0.892 (mean 0.644),respectively.Polymorphic information content (PIC) ranged from 0.115 to 0.866 (mean 0.593).The results for cross-species amplification of the 16 large yellow croaker EST-SSRs on P.polyactis,C.niveatus,C.lucidus,A.argentatus and J.belengeri revealed that 14,12,11,7 and 6 loci were successfully amplified with 1 to 10 alleles with an average of 4.5 per locus,respectively,which are suitable for population genetics studies of these species and useful for phylogenetic relationship analysis among these species.Overall,this study provides a set of type I markers for population genetics studies and genome mapping for large yellow croaker and its closely related species.展开更多
Spinal cord injury(SCI)is a serious clinical disease.Due to the deformability and fragility of the spinal cord,overly rigid hydrogels cannot be used to treat SCI.Hence,we used TPA and Laponite to develop a hydrogel wi...Spinal cord injury(SCI)is a serious clinical disease.Due to the deformability and fragility of the spinal cord,overly rigid hydrogels cannot be used to treat SCI.Hence,we used TPA and Laponite to develop a hydrogel with shear-thinning ability.This hydrogel exhibits good deformation,allowing it to match the physical properties of the spinal cord;additionally,this hydrogel scavenges ROS well,allowing it to inhibit the lipid peroxidation caused by ferroptosis.According to the in vivo studies,the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism.In addition,dental pulp stem cells(DPSCs)were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses.It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.展开更多
Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increas...Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.展开更多
Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design...Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.展开更多
Lanthanides(Ln(Ⅲ))based compounds as light-emitting materials have emerged as successful agents in high-performance defense and lighting systems,magnets,bio-markers,and circuitry.Therefore,they have recently gained m...Lanthanides(Ln(Ⅲ))based compounds as light-emitting materials have emerged as successful agents in high-performance defense and lighting systems,magnets,bio-markers,and circuitry.Therefore,they have recently gained much attention as energy-saving and cost-effective luminescent materials and their applications in analyte detection.The present review summarizes powerful features and recent developments of organo-lanthanide complexes in lighting applications with a particular focus on visible light emitters,including Eu(Ⅲ),Tb(Ⅲ),Sm(Ⅲ),and Dy(Ⅲ)ions.In addition,this review discusses the most relevant aspects of photosensitization,such as the structure,property,functionalization of primary and secondary ligands,and molecular geometry.In addition,coordination sites of organo-lanthanide complexes and their applications collectively contribute to the improved performance of innovative luminescent materials.Finally,the current challenges and key recommendations for advancing organolanthanides in material science are provided.展开更多
The cryogenic milling and milling in conjunction with dielectric barrier discharge plasma (DBDP) have been separately set up. The combined effect of low temperature and plasma on ball milling has been investigated by ...The cryogenic milling and milling in conjunction with dielectric barrier discharge plasma (DBDP) have been separately set up. The combined effect of low temperature and plasma on ball milling has been investigated by examining the refinement of particle size and grain size of iron powder using scanning electron microscopy, X-ray diffraction, and small angle X-ray scattering. It was found that the mean size of iron particles could reach 104nm only after 10 hours of ball milling in conjunction with DBDP, whereas a minimum average grain size of 8.4nm was obtained by cryomilling at -20℃; however, it is difficult to refine the particle size and grain size under the same milling condition in the absence of DBDP and cryogenic temperature.展开更多
Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong' an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated...Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong' an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi, Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.展开更多
Massive amounts of biogas slurry are produced due to the development of biogas plants.The pollution features and the risk of biogas slurry were fully evaluated in this work.Thirty-one biogas slurry samples were collec...Massive amounts of biogas slurry are produced due to the development of biogas plants.The pollution features and the risk of biogas slurry were fully evaluated in this work.Thirty-one biogas slurry samples were collected from sixteen different cities and five different raw materials biogas plants(e.g.cattle manure,swine manure,straw-manure mixture,kitchen waste and chicken manure).The chemical oxygen demand(COD),ammonia nitrogen(NH_(4)^(+)-N),anions(e.g.Cl^(-1),SO_(4)^(2-),NO_(3)^(-)and PO_(4)^(3-)),antibiotics(e.g.sulphonamides,quinolones,β2-receptor agonists,macrolides,tetracyclines and crystal violet)and heavy metals(e.g.Cu,Cd,As,Cr,Hg,Zn and Pb)contents from these biogas slurry samples were systematically investigated.On this basis,risk assessment of biogas slurry was also performed.The concentrations of COD,NH_(4)^(+)-N and PO_(4)^(3-) in biogas slurry samples with chicken manure as raw material were significantly higher than those of other raw materials.Therefore,the biogas slurry from chicken manure raw material demonstrated the most serious eutrophication threat.The antibiotic contents in biogas slurry samples from swine manure were the highest among five raw materials,mostly sulphonamides,quinolones and tetracyclines.Biogas slurry revealed particularly serious arsenic contamination and moderate potential ecological risk.The quadratic polynomial stepwise regression model can quantitatively describe the correlation among NH_(4)^(+)-N,PO_(4)^(3+) and heavy metals concentration of biogas slurry.This work demonstrated a universal potential threat from biogas slurry that can provide supporting data and theoretical basis for harmless treatment and reuse of biogas slurry.展开更多
In 2022,the Pakistan witnessed the hottest spring and wettest summer in history.And devastating floods inundated a large portion of Pakistan and caused enormous damages.However,the primary water source and its contrib...In 2022,the Pakistan witnessed the hottest spring and wettest summer in history.And devastating floods inundated a large portion of Pakistan and caused enormous damages.However,the primary water source and its contributions to these unprecedented floods remain unclear.Based on the reservoir inflow measurements,Multi-Source Weighted-Ensemble Precipitation(MSWEP),the fifth generation ECMWF atmospheric reanalysis(ERA5)products,this study quantified the contributions of monsoon precipitation,antecedent snow-melts,and orographic precipitation enhancement to floods in Pakistan.We found that the Indus experienced at least four inflow up-rushes,which was mainly supplied by precipitation and snowmelt;In upper Indus,abnormally high temperature continued to influence the whole summer and lead to large amounts of snowmelts which not only was a key water supply to the flood but also provided favorable soil moisture conditions for the latter precipitation.Before July,the snowmelt has higher contributions than the precipitation to the streamflow of Indus River,with contribution value of more than 60%.Moreover,the snowmelt could still supply 20%-40%water to the lower Indus in July and August;The leading driver of 2022 mega-floods over the southern Pakistan in July and August was dominated by the precipitation,where terrain disturbance induced precipitation account to approximately 33%over the southern Pakistan.The results help to understand the mechanisms of flood formation,and to better predict future flood risks over complex terrain regions.展开更多
The composition and evolution of interfacial species play a key role during electrocatalytic process.Unveiling the structural evolution and intermediate during catalytic process by in situ characterization can shed ne...The composition and evolution of interfacial species play a key role during electrocatalytic process.Unveiling the structural evolution and intermediate during catalytic process by in situ characterization can shed new light on the electrocatalytic reaction mechanism and develop highly efficient catalyst.However,directly probing the interfacial species is extremely difficult for most spectroscopic techniques due to complicated interfacial environment and ultra-low surface concentration.Herein,electrochemical core-shell nanoparticle enhanced Raman spectroscopy is utilized to probe the composition and evolution processes of interfacial species on Au@Pt,Au@Co,and Au@PtCo core-shell nanoparticle surfaces.The spectral evidences of interfacial intermediates including hydroxide radical(OH*),superoxide ion(O_(2)^(−)),as well as metal oxide species are directly captured by in situ Raman spectroscopy,which are further confirmed by the both isotopic experiment and density functional theory calculation.These results provide a mechanistic guideline for the rational design of highly efficient electrocatalysts.展开更多
Yili Prefecture is located in the western part of the Xinjiang Uyghur Autonomous Region,bordering Kazakhstan to the west.It has historically been a melting pot of multiple civilizations and ethnicities,where different...Yili Prefecture is located in the western part of the Xinjiang Uyghur Autonomous Region,bordering Kazakhstan to the west.It has historically been a melting pot of multiple civilizations and ethnicities,where different religious beliefs,languages,and customs influence each other,leading to the intangible cultural heritage resources of Yili Prefecture displaying distinct multiethnic cultural characteristics.In modern times,the various categories of intangible cultural heritage projects in Yili Prefecture have evolved naturally while also being influenced by economic.展开更多
Two new free-living marine nematode species from the mangrove wetlands of Fujian Province, China are identified and illustrated. Sabatieria conicoseta sp. nov. is characterized by its short conical somatic setae. Ther...Two new free-living marine nematode species from the mangrove wetlands of Fujian Province, China are identified and illustrated. Sabatieria conicoseta sp. nov. is characterized by its short conical somatic setae. There are 12-15 tubular pre-cloacal supplements and 12-15/Jm long straight gubernacular apophyses. Dorylaimopsis papilla sp. nov. is characterized by spicules which are 1.5-1.8 a. b. d, long with media cuticularized strip along entire spicules, and have a cephalated proximal end with small hooked. There are 16-18 small papillate precloacal supplements and 37-40 μm long dorso-caudal gubernacular apophyses.展开更多
Intensive aquaculture-induced oxidative stress is detrimental to fish health and yield.Medicinal plants show promise as natural health boosters and antioxidants in the aquaculture industry.Therefore,this work investig...Intensive aquaculture-induced oxidative stress is detrimental to fish health and yield.Medicinal plants show promise as natural health boosters and antioxidants in the aquaculture industry.Therefore,this work investigated the effects of turmeric aqueous extract(TAE)on the growth performance,antioxidant status,and hydrogen peroxide(H2O2)-induced oxidative stress in spotted seabass(Lateolabrax maculatus).Fish were fed diets supplemented with 0(Con),2(TAE2),or 4(TAE4)g/kg TAE for eight weeks,then were injected with H2O2.The results showed that dietary supplementation of TAE did not affect fish growth,feed utilization,or body composition.TAE treatment increased liver antioxidant enzyme activities and decreased liver malondialdehyde content and serum levels of glutamate oxalate transaminase,glutamate pyruvate transaminase,and lactate dehydrogenase.Furthermore,the increases in mortality,liver malondialdehyde content,and serum biomarkers of liver injury in the H2O2-treated fish were inhibited as a consequence of the TAE treatment.In addition,TAE treatment activated the Nrf2/Keap1 pathway in the liver,supported by the up-regulated expression of nrf2,ho-1,and gclc,and down-regulated keap1 expression.Overall,dietary incorporation of TAE protected against H2O2-induced oxidative stress in spotted seabass probably by enhancing antioxidant capacity through the Nrf2/Keap1 pathway.展开更多
基金Project supported by the Fujian Provincial Natural Science Foundation of China (No. D0210010).
文摘Using Landsat TM data of 1988, 1998 and 2001, the dynamic process of the spatial-temporal characteristics of land use changes during 13 years from 1988 to 2001 in the special economic zone of Xiamen, China was analyzed to improve understanding and to find the driving forces of land use change so that sustainable land utilization could be practiced. During the 13 years cropland decreased remarkably by nearly 11304.95 ha. The areas of rural-urban construction and water body increased by 10 152.24 ha and 848.94 ha, respectively. From 1988 to 2001, 52.5% of the lost cropland was converted into rural-urban industrial land. Rapid urbanization contributed to a great change in the rate of cropland land use during these years. Land-reclamation also contributed to a decrease in water body area as well as marine ecological and environmental destruction. In the study area 1) urbanization and industrialization, 2) infrastructure and agricultural intensification, 3) increased affluence of the farming community, and 4) policy factors have driven the land use changes. Possible sustainable land use measures included construction of a land management system, land planning, development of potential land resources, new technology applications, and marine ecological and environmental protection.
基金financially supported by the National Key Research and Development Programme(Nos.2017YFB0404300,2017YFB0404301)the National Natural Science Foundation of China(Nos.51872247,51832005,11804255)+1 种基金the Natural Science Foundation of Fujian Province(No.2018J01080)the Young Elite Scientists Sponsorship Programme by China Association for Science and Technology(No.2018QNRC001).
文摘Stress sensing is the basis of human-machine interface,biomedical engineering,and mechanical structure detection systems.Stress sensing based on mechanoluminescence(ML)shows significant advantages of distributed detection and remote response to mechanical stimuli and is thus expected to be a key technology of next-generation tactile sensors and stress recorders.However,the instantaneous photon emission in ML materials generally requires real-time recording with a photodetector,thus limiting their application fields to real-time stress sensing.In this paper,we report a force-induced charge carrier storage(FICS)effect in deep-trap ML materials,which enables storage of the applied mechanical energy in deep traps and then release of the stored energy as photon emission under thermal stimulation.The FICS effect was confirmed in five ML materials with piezoelectric structures,efficient emission centres and deep trap distributions,and its mechanism was investigated through detailed spectroscopic characterizations.Furthermore,we demonstrated three applications of the FICS effect in electronic signature recording,falling point monitoring and vehicle collision recording,which exhibited outstanding advantages of distributed recording,longterm storage,and no need for a continuous power supply.The FICS effect reported in this paper provides not only a breakthrough for ML materials in the field of stress recording but also a new idea for developing mechanical energy storage and conversion systems.
基金Project supported by the National Natural Science Foundation of China (No. 20702019)the Foundation for Young Professors of Jimei University, China
文摘Optimization of a process for extracting astaxanthin from Phaffia rhodozyma by acidic method was investigated, regarding several extraction factors such as acids, organic solvents, temperature and time. Fractional factorial design, central composite design and response surface methodology were used to derive a statistically optimal model, which corresponded to the following optimal condition: concentration of lactic acid at 5.55 mol/L, ratio of ethanol to yeast dry weight at 20.25 ml/g, temperature for cell-disruption at 30 ℃, and extraction time for 3 min. Under this condition, astaxanthin and the total carotenoids could be extracted in amounts of 1294.7 μg/g and 1516.0 μg/g, respectively. This acidic method has advantages such as high extraction efficiency, low chemical toxicity and no special requirement of instruments. Therefore, it might be a more feasible and practical method for industrial practice.
基金supported by the National Natural Science Foundation of China(61702251,61363049,11571011)the State Scholarship Fund of China Scholarship Council(CSC)(201708360040)+3 种基金the Natural Science Foundation of Jiangxi Province(20161BAB212033)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6030)the Doctor Scientific Research Starting Foundation of Northwest University(338050050)Youth Academic Talent Support Program of Northwest University
文摘This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.
基金supported by the National Key R&D Program of China(Grant Nos. 2019YFF0301802, 2019YFB2004802, and 2018YFF0300605)National Natural Science Foundation of China (Grant Nos. 51975541 and51975542)+1 种基金Applied Fundamental Research Program of Shanxi Province(Grant No. 201901D211281)National Defense Fundamental Research Project and Program for the Innovative Talents of Higher Education Institutions of Shanxi
文摘Effective collection,recognition,and analysis of sports information is the key to intelligent sports,which can help athletes to improve their skills and formulate scientific training plans and competition strategies.At present,wearable electronic devices used for movement monitoring still have some limitations,such as high cost and energy consumption,incompatibility of suitable flexibility and personalized spatial structure,dissatisfactory data analysis methods,etc.In this work,a novel three-dimensionalprinted thermoplastic polyurethane is introduced as the elastic shell and friction layer,and it endows the proposed customizable and flexible triboelectric nanogenerator(CF-TENG)with personalized spatial structure and robust correlation to external pressure.In practical application,it exhibits highly sensitive responses to the joint-bending motion of the finger,wrist,or elbow.Furthermore,a pressure-sensing insole and smart ski pole based on CF-TENG are manufactured to build a comprehensive sports monitoring system to transmit the athletes’motion information from feet and hands through the plantar pressure distribution and ski pole action.To recognize the movement status,the self-developed automatic peak recognition algorithm(P-Find)and machine learning algorithm(subspace K-Nearest Neighbors)were introduced to accurately distinguish the four typical motion behaviors and three primary sub-techniques of cross-country skiing,with accuracy rates of 98.2%and 100%.This work provides a novel strategy to promote the personalized applications of TENGs in intelligent sports.
基金supported by the National Key Research and Development Project of China(No.2016YFD0800706)the Science and Technology Project of Fujian Province of China(No.2018Y0080)the Science and Technology Project of Xiamen(No.3502Z20172026)
文摘Cadmium (Cd) and arsenic (As) are two of the most toxic elements.However,the chemical behaviors of these two elements are different,making it challenging to utilize a single adsorbent with high adsorption capacity for both Cd(Ⅱ) and As(Ⅴ) removal.To solve this problem,we synthesized HA/Fe-Mn oxides-loaded biochar (HFMB),a novel ternary material,to perform this task,wherein scanning electron microscopy (SEM) combined with EDS (SEM-EDS) was used to characterize its morphological and physicochemical properties.The maximum adsorption capacity of HFMB was 67.11 mg/g for Cd(Ⅱ) and 35.59 mg/g for As(Ⅴ),which is much higher compared to pristine biochar (11.06 mg/g,0 mg/g for Cd(Ⅱ) and As(Ⅴ),respectively).The adsorption characteristics were investigated by adsorption kinetics and the effects of the ionic strength and pH of solutions.X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FT-IR) revealed that chelation and deposition were the adsorption mechanisms that bound Cd(Ⅱ) to HFMB,while ligand exchange was the adsorption mechanism that bound As(Ⅴ).
基金Key Project of the Chinese Academy of Sciences,No.ZDRW-ZS-2016-6-3National Natural Science Foundation of China,No.41501490
文摘The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coarse-grained, holistic cargo ship transportation network while ignoring the structural diversity of different sub-networks. In this paper, we evaluate the robustness of the global cargo ship transportation network based on the most recent Automatic Identification System(AIS) data available. First, we subdivide three typical cargo ship transportation networks(i.e., oil tanker, container ship and bulk carrier) from the original cargo ship transportation network. Then, we design statistical indices based on complex network theory and employ four attack strategies, including random attack and three intentional attacks(i.e., degree-based attack, betweenness-based attack and flux-based attack) to evaluate the robustness of the three typical cargo ship transportation networks. Finally, we compare the integrity of the remaining ports of the network when a small proportion of ports lose their function. The results show that 1) compared with the holistic cargo ship transportation network, the fine-grain-based cargo ship transportation networks can fully reflect the pattern and process of global cargo transportation; 2) different cargo ship networks behave heterogeneously in terms of their robustness, with the container network being the weakest and the bulk carrier network being the strongest; and 3) small-scale intentional attacks may have significant influence on the integrity of the container network but a minor impact on the bulk carrier and oil tanker transportation networks. These conclusions can help improve the decision support capabilities in maritime transportation planning and emergency response and facilitate the establishment of a more reliable maritime transportation system.Abstract: The robustness of cargo ship transportation networks is essential to the stability of the world trade system. The current research mainly focuses on the coa
基金The National High Technology Research and Development Program of China (863 program) under contract Nos 2006AA10A405 and 2006AA09Z418the National Natural Science Foundation of China under contract Nos 30771663 and 30471329the Foundation for Innovation Research Team of Jimei University,China under contract No.2006A001
文摘Simple sequence repeat (SSR) markers were obtained for the large yellow croaker Pseudosciaena crocea using 1 205 expressed sequences tags (ESTs) from the NCBI database.Primers for 48 ESTSSR loci were designed and screened with 30 P.crocea specimens captured from Guanjingyang sea area in Fujian Province of China.Sixteen of the loci were polymorphic,which were amplified with 3 to 11 alleles per locus and the mean of 6.13.The observed and expected heterozygosity per locus ranged from 0.091 to 0.844 (mean 0.544) and from 0.118 to 0.892 (mean 0.644),respectively.Polymorphic information content (PIC) ranged from 0.115 to 0.866 (mean 0.593).The results for cross-species amplification of the 16 large yellow croaker EST-SSRs on P.polyactis,C.niveatus,C.lucidus,A.argentatus and J.belengeri revealed that 14,12,11,7 and 6 loci were successfully amplified with 1 to 10 alleles with an average of 4.5 per locus,respectively,which are suitable for population genetics studies of these species and useful for phylogenetic relationship analysis among these species.Overall,this study provides a set of type I markers for population genetics studies and genome mapping for large yellow croaker and its closely related species.
基金This study was partly funded by grants from the National Natural Science Funding of China(82172424,82271629)Outstanding Youth Fund of Zhejiang Province(LR22H060002)+2 种基金Zhejiang Medical and Health Science and Technology Plan Project(2022RC210,2021KY212)Wenzhou Basic Science Research Plan Project(Y20210045)CAMS Innovation Fund for Medical Sciences(2019-I2M-5-028).
文摘Spinal cord injury(SCI)is a serious clinical disease.Due to the deformability and fragility of the spinal cord,overly rigid hydrogels cannot be used to treat SCI.Hence,we used TPA and Laponite to develop a hydrogel with shear-thinning ability.This hydrogel exhibits good deformation,allowing it to match the physical properties of the spinal cord;additionally,this hydrogel scavenges ROS well,allowing it to inhibit the lipid peroxidation caused by ferroptosis.According to the in vivo studies,the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism.In addition,dental pulp stem cells(DPSCs)were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses.It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI.
基金supported by the National Key Research and Development Project Intergovernmental Cooperation in Science and Technology of China(2018YFE0126900)the Key R&D Program of Lishui City(2021ZDYF12)the National Natural Science Foundation of China(82271629)。
文摘Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.
基金Project supported by the National Natural Science Foundation of China (No.30571450)the Foundation for Young Professors of Jimei University of Xiamen,China
文摘Fermentation of Phaffia rhodozyma is a major method for producing astaxanthin, an important pigment with industrial and pharmaceutical application. To improve astaxanthin productivity, single factor and mixture design experiments were used to investigate the effects of nitrogen source on Phaffia rhodozyma cultivation and astaxanthin production. Results of single factor experiments showed nitrogen source could significantly affect P. rhodozyma cultivation with respect to carbon source utilization, yeast growth and astaxanthin accumulation. Further studies of mixture design experiments using (NH4)2SO4, KNO3 and beef extract as nitrogen sources indicated that the proportion of three nitrogen sources was very important to astaxanthin production. Validation experiments showed that the optimal nitrogen source was composed of 0.28 g/L (NH4)2SO4, 0.49 g/L KNO3 and 1.19 g/L beef extract. The kinetic characteristics of batch cultivation were investigated in a 5-L pH-stat fermentor. The maximum amount of biomass and highest astaxanthin yield in terms of volume and in terms of biomass were 7.71 mg/L and 1.00 mg/g, respectively.
基金Project supported by the Human Resource Development Group(HRDG)Council of Scientific&Industrial Research(CSIR),New Delhi,India(09/105(0266)-2018-EMR-1)。
文摘Lanthanides(Ln(Ⅲ))based compounds as light-emitting materials have emerged as successful agents in high-performance defense and lighting systems,magnets,bio-markers,and circuitry.Therefore,they have recently gained much attention as energy-saving and cost-effective luminescent materials and their applications in analyte detection.The present review summarizes powerful features and recent developments of organo-lanthanide complexes in lighting applications with a particular focus on visible light emitters,including Eu(Ⅲ),Tb(Ⅲ),Sm(Ⅲ),and Dy(Ⅲ)ions.In addition,this review discusses the most relevant aspects of photosensitization,such as the structure,property,functionalization of primary and secondary ligands,and molecular geometry.In addition,coordination sites of organo-lanthanide complexes and their applications collectively contribute to the improved performance of innovative luminescent materials.Finally,the current challenges and key recommendations for advancing organolanthanides in material science are provided.
基金This work was supported by the National natural Science Foundation(No.50371027)the team project from Natural Science Foundation of Guangdong Province and Natural Science Foundation of Fujian Province(No.E0440001).
文摘The cryogenic milling and milling in conjunction with dielectric barrier discharge plasma (DBDP) have been separately set up. The combined effect of low temperature and plasma on ball milling has been investigated by examining the refinement of particle size and grain size of iron powder using scanning electron microscopy, X-ray diffraction, and small angle X-ray scattering. It was found that the mean size of iron particles could reach 104nm only after 10 hours of ball milling in conjunction with DBDP, whereas a minimum average grain size of 8.4nm was obtained by cryomilling at -20℃; however, it is difficult to refine the particle size and grain size under the same milling condition in the absence of DBDP and cryogenic temperature.
文摘Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong' an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi, Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.
基金supported by the National Natural Science Foundation of China(22038012,42077030)the Science and Technology Program of Fujian Province,China(2020NZ012015,2020Y4002)the Fundamental Research Funds for the Central Universities of China(20720190001)。
文摘Massive amounts of biogas slurry are produced due to the development of biogas plants.The pollution features and the risk of biogas slurry were fully evaluated in this work.Thirty-one biogas slurry samples were collected from sixteen different cities and five different raw materials biogas plants(e.g.cattle manure,swine manure,straw-manure mixture,kitchen waste and chicken manure).The chemical oxygen demand(COD),ammonia nitrogen(NH_(4)^(+)-N),anions(e.g.Cl^(-1),SO_(4)^(2-),NO_(3)^(-)and PO_(4)^(3-)),antibiotics(e.g.sulphonamides,quinolones,β2-receptor agonists,macrolides,tetracyclines and crystal violet)and heavy metals(e.g.Cu,Cd,As,Cr,Hg,Zn and Pb)contents from these biogas slurry samples were systematically investigated.On this basis,risk assessment of biogas slurry was also performed.The concentrations of COD,NH_(4)^(+)-N and PO_(4)^(3-) in biogas slurry samples with chicken manure as raw material were significantly higher than those of other raw materials.Therefore,the biogas slurry from chicken manure raw material demonstrated the most serious eutrophication threat.The antibiotic contents in biogas slurry samples from swine manure were the highest among five raw materials,mostly sulphonamides,quinolones and tetracyclines.Biogas slurry revealed particularly serious arsenic contamination and moderate potential ecological risk.The quadratic polynomial stepwise regression model can quantitatively describe the correlation among NH_(4)^(+)-N,PO_(4)^(3+) and heavy metals concentration of biogas slurry.This work demonstrated a universal potential threat from biogas slurry that can provide supporting data and theoretical basis for harmless treatment and reuse of biogas slurry.
基金the Second Tibet Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0903-02 and 2019QZKK0906)the National Science Foundation of China(42371085).
文摘In 2022,the Pakistan witnessed the hottest spring and wettest summer in history.And devastating floods inundated a large portion of Pakistan and caused enormous damages.However,the primary water source and its contributions to these unprecedented floods remain unclear.Based on the reservoir inflow measurements,Multi-Source Weighted-Ensemble Precipitation(MSWEP),the fifth generation ECMWF atmospheric reanalysis(ERA5)products,this study quantified the contributions of monsoon precipitation,antecedent snow-melts,and orographic precipitation enhancement to floods in Pakistan.We found that the Indus experienced at least four inflow up-rushes,which was mainly supplied by precipitation and snowmelt;In upper Indus,abnormally high temperature continued to influence the whole summer and lead to large amounts of snowmelts which not only was a key water supply to the flood but also provided favorable soil moisture conditions for the latter precipitation.Before July,the snowmelt has higher contributions than the precipitation to the streamflow of Indus River,with contribution value of more than 60%.Moreover,the snowmelt could still supply 20%-40%water to the lower Indus in July and August;The leading driver of 2022 mega-floods over the southern Pakistan in July and August was dominated by the precipitation,where terrain disturbance induced precipitation account to approximately 33%over the southern Pakistan.The results help to understand the mechanisms of flood formation,and to better predict future flood risks over complex terrain regions.
基金the National Key Research and Development Program of China(No.2020YFB1505800)the National Natural Science Foundation of China(Nos.21925404 and 22021001)+5 种基金the Shenzhen Science and Technology Research Grant(No.JCYJ20200109140416788)the Science and Technology Program of Fujian Province(No.2021Y01010295)the Youth Talent Support Program of Fujian Province(Eyas Plan of Fujian Province 2021)Research Initiation Fund of Jimei University(No.ZQ2021008)the Natural Science Foundation of Fujian Province of China(No.2021J06001)the China Postdoctoral Science Foundation(Nos.2021TQ0188 and 2021M691874).
文摘The composition and evolution of interfacial species play a key role during electrocatalytic process.Unveiling the structural evolution and intermediate during catalytic process by in situ characterization can shed new light on the electrocatalytic reaction mechanism and develop highly efficient catalyst.However,directly probing the interfacial species is extremely difficult for most spectroscopic techniques due to complicated interfacial environment and ultra-low surface concentration.Herein,electrochemical core-shell nanoparticle enhanced Raman spectroscopy is utilized to probe the composition and evolution processes of interfacial species on Au@Pt,Au@Co,and Au@PtCo core-shell nanoparticle surfaces.The spectral evidences of interfacial intermediates including hydroxide radical(OH*),superoxide ion(O_(2)^(−)),as well as metal oxide species are directly captured by in situ Raman spectroscopy,which are further confirmed by the both isotopic experiment and density functional theory calculation.These results provide a mechanistic guideline for the rational design of highly efficient electrocatalysts.
文摘Yili Prefecture is located in the western part of the Xinjiang Uyghur Autonomous Region,bordering Kazakhstan to the west.It has historically been a melting pot of multiple civilizations and ethnicities,where different religious beliefs,languages,and customs influence each other,leading to the intangible cultural heritage resources of Yili Prefecture displaying distinct multiethnic cultural characteristics.In modern times,the various categories of intangible cultural heritage projects in Yili Prefecture have evolved naturally while also being influenced by economic.
基金The National Natural Science Foundation of China under contract No.31772416the Science Foundation of Fujian Province under contract No.2017J01450
文摘Two new free-living marine nematode species from the mangrove wetlands of Fujian Province, China are identified and illustrated. Sabatieria conicoseta sp. nov. is characterized by its short conical somatic setae. There are 12-15 tubular pre-cloacal supplements and 12-15/Jm long straight gubernacular apophyses. Dorylaimopsis papilla sp. nov. is characterized by spicules which are 1.5-1.8 a. b. d, long with media cuticularized strip along entire spicules, and have a cephalated proximal end with small hooked. There are 16-18 small papillate precloacal supplements and 37-40 μm long dorso-caudal gubernacular apophyses.
基金supported by China Agriculture Research System (CARS-47)the Natural Science Foundation of Fujian Province of China (grant number:2019J01060380).
文摘Intensive aquaculture-induced oxidative stress is detrimental to fish health and yield.Medicinal plants show promise as natural health boosters and antioxidants in the aquaculture industry.Therefore,this work investigated the effects of turmeric aqueous extract(TAE)on the growth performance,antioxidant status,and hydrogen peroxide(H2O2)-induced oxidative stress in spotted seabass(Lateolabrax maculatus).Fish were fed diets supplemented with 0(Con),2(TAE2),or 4(TAE4)g/kg TAE for eight weeks,then were injected with H2O2.The results showed that dietary supplementation of TAE did not affect fish growth,feed utilization,or body composition.TAE treatment increased liver antioxidant enzyme activities and decreased liver malondialdehyde content and serum levels of glutamate oxalate transaminase,glutamate pyruvate transaminase,and lactate dehydrogenase.Furthermore,the increases in mortality,liver malondialdehyde content,and serum biomarkers of liver injury in the H2O2-treated fish were inhibited as a consequence of the TAE treatment.In addition,TAE treatment activated the Nrf2/Keap1 pathway in the liver,supported by the up-regulated expression of nrf2,ho-1,and gclc,and down-regulated keap1 expression.Overall,dietary incorporation of TAE protected against H2O2-induced oxidative stress in spotted seabass probably by enhancing antioxidant capacity through the Nrf2/Keap1 pathway.