This paper presents the results of experiments and numerical simulation of the turbulent swirling flow and heat transfer in a duct.The calculated results are in good agreement with data obtained by measurements.It is ...This paper presents the results of experiments and numerical simulation of the turbulent swirling flow and heat transfer in a duct.The calculated results are in good agreement with data obtained by measurements.It is found that the swirling flow promotes heat transfer to the wall of the duct;the swirl numbers are dependent upon the vane exit angles of the swirler,distance from the swirler and the duct Reynolds number.But the decay of swirling flow in streamwise direction is related to local Reynolds numbers and is independent of the swirler exit angle.The swirl flow characteristics presented in this paper may be used for engineering purposes.展开更多
Experimental investigations of boiling heat transfer from porous suffaces at atmospheric pressure were performed. The porous surfaces are plain tubes covered with metal screens, V-shaped groove tubes covered with sc...Experimental investigations of boiling heat transfer from porous suffaces at atmospheric pressure were performed. The porous surfaces are plain tubes covered with metal screens, V-shaped groove tubes covered with screens, plain tubes sintered with screens, and V-shaped groove tubes sintered with screens.The experimental results show that siatering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer. The boiling hysteresis was observed in the experiment. This paper discusses the mechanism of the boiling heat transfer horn those kinds of porous surfaces stated above.展开更多
Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment. The vertical heating tube was inserted in porous matrix composed of five ...Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment. The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whose diameters range from 0.5 to 4.3 mm. Due to the effect of composition, the trend of combination of vapor bubbles was reduced, resulting in the increase of peak heat flux of binary mixture. With the increase of ethanol mole fraction, 0.5 mm diameter bead had lower value of peak heat flux, while for pure liquid the critical state is difficult to appear. With given diameter of glass bead, there existed an optimum value of mole fraction of ethanol, which was decreased with the increase of bead diameter. A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix, which agreed with the experimental results satisfactorily.展开更多
Effect of velocity jump and temperature jump on the heat and momentum transfer in micro-domains is discussed in detail. A simulation aided by locally fully developed assumption is developed to ex-plain the experimenta...Effect of velocity jump and temperature jump on the heat and momentum transfer in micro-domains is discussed in detail. A simulation aided by locally fully developed assumption is developed to ex-plain the experimental results different from those predicted by conventional theory. Heat transfer in microrchannels under the uniform heat flux is also analyzed. It is found that velocity-jump and temperature-jump have an opposite innuence and Nusselt number has a greater ralue when the Knud-sen number is very small. With the increasing of Knudsen Number, Nusselt number became smaller than 8.24.展开更多
文摘This paper presents the results of experiments and numerical simulation of the turbulent swirling flow and heat transfer in a duct.The calculated results are in good agreement with data obtained by measurements.It is found that the swirling flow promotes heat transfer to the wall of the duct;the swirl numbers are dependent upon the vane exit angles of the swirler,distance from the swirler and the duct Reynolds number.But the decay of swirling flow in streamwise direction is related to local Reynolds numbers and is independent of the swirler exit angle.The swirl flow characteristics presented in this paper may be used for engineering purposes.
文摘Experimental investigations of boiling heat transfer from porous suffaces at atmospheric pressure were performed. The porous surfaces are plain tubes covered with metal screens, V-shaped groove tubes covered with screens, plain tubes sintered with screens, and V-shaped groove tubes sintered with screens.The experimental results show that siatering metal screens around spiral V-shaped groove tubes can greatly improve the boiling heat transfer. The boiling hysteresis was observed in the experiment. This paper discusses the mechanism of the boiling heat transfer horn those kinds of porous surfaces stated above.
文摘Ethanol-water binary mixtures with 7 different mole fractions of ethanol ranging from 0 to 1 were adopted as testing liquids in the experiment. The vertical heating tube was inserted in porous matrix composed of five well sorted glass beads whose diameters range from 0.5 to 4.3 mm. Due to the effect of composition, the trend of combination of vapor bubbles was reduced, resulting in the increase of peak heat flux of binary mixture. With the increase of ethanol mole fraction, 0.5 mm diameter bead had lower value of peak heat flux, while for pure liquid the critical state is difficult to appear. With given diameter of glass bead, there existed an optimum value of mole fraction of ethanol, which was decreased with the increase of bead diameter. A dimensionless heat transfer coefficient was predicted through the introduction of a dimensionless parameter of porous matrix, which agreed with the experimental results satisfactorily.
文摘Effect of velocity jump and temperature jump on the heat and momentum transfer in micro-domains is discussed in detail. A simulation aided by locally fully developed assumption is developed to ex-plain the experimental results different from those predicted by conventional theory. Heat transfer in microrchannels under the uniform heat flux is also analyzed. It is found that velocity-jump and temperature-jump have an opposite innuence and Nusselt number has a greater ralue when the Knud-sen number is very small. With the increasing of Knudsen Number, Nusselt number became smaller than 8.24.