期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
XA23 Is an Executor R Protein and Confers Broad-Spectrum Disease Resistance in Rice 被引量:67
1
作者 Chunlian Wang Xiaoping Zhang +10 位作者 Yinglun Fan Ying Gao Qinlong Zhu Chongke Zheng Tengfei Qin Yanqiang Li Jinying Che Mingwei Zhang Bing Yang Yaoguang Liu Kaijun Zhao 《Molecular Plant》 SCIE CAS CSCD 2015年第2期290-302,共13页
The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no consider... The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike XalO, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen. 展开更多
关键词 XA23 executor R gene TAL effector Xanthomonas oryzae pv. oryzae AvrXa23 RICE
原文传递
WheatOmics:A platform combining multiple omics data to accelerate functional genomics studies in wheat 被引量:30
2
作者 Shengwei Ma Meng Wang +9 位作者 Jianhui Wu Weilong Guo Yongming Chen Guangwei Li Yanpeng Wang Weiming Shi Guangmin Xia Daolin FU Zhensheng Kang Fei Ni 《Molecular Plant》 SCIE CAS CSCD 2021年第12期1965-1968,共4页
Dear Editor,Mold-breaking progress in whole-genome sequencing and rapid accumulation of multi-omics data have revolutionized the research strategies of functional genomics in wheat(Wang et al.,2018).However,how to acc... Dear Editor,Mold-breaking progress in whole-genome sequencing and rapid accumulation of multi-omics data have revolutionized the research strategies of functional genomics in wheat(Wang et al.,2018).However,how to access these vast multi-omics data and to extract key information on genes of in-terest,is still challenging for most wet-lab or field wheat re-searchers who have little bioinformatic experiences and cannot access the expensive computational resources.Here,we pre-sent WheatOmics(http://wheatomics.sdau.edu.cn/,previously designated as Triticeae Multi-omics Center,http://202.194.139.32/),a free,web-accessible,and user-friendly platform.WheatOmics not only empowers the effective access to the visualized multi-omics data of user-interested genes but also offers several distinctive and practical toolkits that can ease almost every aspect of wheat functional genomics studies(Figure 1A). 展开更多
关键词 WHEAT FUNCTIONAL FIGURE
原文传递
Resequencing of 145 Landmark Cultivars Reveals Asymmetric Sub-genome Selection and Strong Founder Genotype Effects on Wheat Breeding in China 被引量:30
3
作者 Chenyang Hao Chengzhi Jiao +17 位作者 Jian Hou Tian Li Hongxia Liu Yuquan Wang Jun Zheng Hong Liu Zhihong Bi Fengfeng Xu Jing Zhao Lin Ma Yamei Wang Uzma Majeed Xu Liu Rudi Appels Marco Maccaferri Roberto Tuberosa Hongfeng Lu Xueyong Zhang 《Molecular Plant》 SCIE CAS CSCD 2020年第12期1733-1751,共19页
Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes.More than 3000 wheat cultivars have be... Controlled pedigrees and the multi-decade timescale of national crop plant breeding programs offer a unique experimental context for examining how selection affects plant genomes.More than 3000 wheat cultivars have been registered,released,and documented since 1949 in China.In this study,a set of 145 elite cultivars selected from historical points of wheat breeding in China were re-sequenced.A total of 43.75 Tb of sequence data were generated with an average read depth of 17.94x for each cultivar,and more than 60.92 million SNPs and 2.54 million InDels were captured,based on the Chinese Spring RefSeq genome v1.0.Seventy years of breeder-driven selection led to dramatic changes in grain yield and related phenotypes,with distinct genomic regions and phenotypes tar-geted by different breeders across the decades.There are very clear instances illustrating how introduced Italian and otherforeign germplasm was integrated into Chinese wheat programs and reshaped the genomic landscape of local modern cultivars.Importantly,the resequencing data also highlighted significant asymmetric breeding selec-tion among the three sub-genomes:this was evident in both the collinear blocks for homeologous chromosomes and among sets of three homeologous genes.Accumulation of more newly assembled genes in newer cultivars implied the potential value of these genes in breeding.Conserved and extended sharing of linkage disequilibrium(LD)blocks was highlighted among pedigree-related cultivars,in which fewer haplotype differences were detected.Fixation or replacement of haplotypes from founder genotypes after generations of breeding was related to their breeding value.Based on the haplotype frequency changes in LD blocks of pedigree-related cultivars,we propose a strategy for evaluating the breeding value of any given line on the basis of the accumulation(pyramiding)of bene-ficial haplotypes.Collectively,our study demonstrates the influence of "founder genotypes" on the output of breeding efforts over many decades and also suggests that found 展开更多
关键词 wheat breeding asymmetric selection founder genotype haplotype block
原文传递
Wheat genomic study for genetic improvement of traits in China 被引量:23
4
作者 Jun Xiao Bao Liu +37 位作者 Yingyin Yao Zifeng Guo Haiyan Jia Lingrang Kong Aimin Zhang Wujun Ma Zhongfu Ni Shengbao Xu Fei Lu Yuannian Jiao Wuyun Yang Xuelei Lin Silong Sun Zefu Lu Lifeng Gao Guangyao Zhao Shuanghe Cao Qian Chen Kunpu Zhang Mengcheng Wang Meng Wang Zhaorong Hu Weilong Guo Guoqiang Li Xin Ma Junming Li Fangpu Han Xiangdong Fu Zhengqiang Ma Daowen Wang Xueyong Zhang Hong-Qing Ling Guangmin Xia Yiping Tong Zhiyong Liu Zhonghu He Jizeng Jia Kang Chong 《Science China(Life Sciences)》 SCIE CAS CSCD 2022年第9期1718-1775,共58页
Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestic... Bread wheat(Triticum aestivum L.)is a major crop that feeds 40%of the world’s population.Over the past several decades,advances in genomics have led to tremendous achievements in understanding the origin and domestication of wheat,and the genetic basis of agronomically important traits,which promote the breeding of elite varieties.In this review,we focus on progress that has been made in genomic research and genetic improvement of traits such as grain yield,end-use traits,flowering regulation,nutrient use efficiency,and biotic and abiotic stress responses,and various breeding strategies that contributed mainly by Chinese scientists.Functional genomic research in wheat is entering a new era with the availability of multiple reference wheat genome assemblies and the development of cutting-edge technologies such as precise genome editing tools,highthroughput phenotyping platforms,sequencing-based cloning strategies,high-efficiency genetic transformation systems,and speed-breeding facilities.These insights will further extend our understanding of the molecular mechanisms and regulatory networks underlying agronomic traits and facilitate the breeding process,ultimately contributing to more sustainable agriculture in China and throughout the world. 展开更多
关键词 WHEAT GENOMICS genetic improvement China
原文传递
Rapid HPLC Method for Determination of 12 Isoflavone Components in Soybean Seeds 被引量:25
5
作者 SUN Jun-ming SUN Bao-li +3 位作者 HAN Fen-xia YAN Shu-rong YANG Hua Akio Kikuchi 《Agricultural Sciences in China》 CAS CSCD 2011年第1期70-77,共8页
It is important to determine the isoflavone components by high-performance liquid chromatography (HPLC) for the molecular assistant selection of isoflavone in soybean. Based on the standard samples of 12 isoflavone ... It is important to determine the isoflavone components by high-performance liquid chromatography (HPLC) for the molecular assistant selection of isoflavone in soybean. Based on the standard samples of 12 isoflavone components, the isoflavone components were analyzed using the determination of absorbance peaks method by HPLC. The results showed that there were different maximum ultraviolet (UV) absorbance for the aglycones of daidzein, glycitein, and genistein, which were at 250, 257, and 260 nm, respectively. A linear gradient elution of acetonitrile (13-30%) containing 0. 1% acetic acid as a mobile phase was applied on a YMC-C18 column at 35℃. The 12 isoflavone components were determined using the UV detector by HPLC. We concluded that this is a rapid and precise method which adapted to determine the large numbers of samples with microanalysis. 展开更多
关键词 soybean (Glycine max L. Merri) ISOFLAVONE HPLC
下载PDF
Breeding wheat for resistance to Fusarium head blight in the Global North: China, USA, and Canada 被引量:15
6
作者 Zhanwang Zhu Yuanfeng Hao +5 位作者 Mohamed Mergoum Guihua Bai Gavin Humphreys Sylvie Cloutier Xianchun Xia Zhonghu He 《The Crop Journal》 SCIE CAS CSCD 2019年第6期730-738,共9页
The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing... The objective of this paper is to review progress made in wheat breeding for Fusarium head blight(FHB) resistance in China, the United States of America(USA), and Canada. In China,numerous Chinese landraces possessing high levels of FHB resistance were grown before the 1950 s. Later, pyramiding multiple sources of FHB resistance from introduced germplasm such as Mentana and Funo and locally adapted cultivars played a key role in combining satisfactory FHB resistance and high yield potential in commercial cultivars.Sumai 3, a Chinese spring wheat cultivar, became a major source of FHB resistance in the USA and Canada, and contributed to the release of more than 20 modern cultivars used for wheat production, including the leading hard spring wheat cultivars Alsen, Glenn, Barlow and SY Ingmar from North Dakota, Faller and Prosper from Minnesota, and AAC Brandon from Canada. Brazilian wheat cultivar Frontana, T. dicoccoides and other local germplasm provided additional sources of resistance. The FHB resistant cultivars mostly relied on stepwise accumulation of favorable alleles of both genes for FHB resistance and high yield,with marker-assisted selection being a valuable complement to phenotypic selection. With the Chinese Spring reference genome decoded and resistance gene Fhb1 now cloned, new genomic tools such as genomic selection and gene editing will be available to breeders, thus opening new possibilities for development of FHB resistant cultivars. 展开更多
关键词 Fhb1 FUSARIUM head blight RESISTANCE FUSARIUM GRAMINEARUM Triticum AESTIVUM WHEAT BREEDING
下载PDF
GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light 被引量:14
7
作者 Xiangguang Lyu Qican Cheng +12 位作者 Chao Qin Yinghui Li Xinying Xu Ronghuan Ji Ruolan Mu Hongyu Li Tao Zhao Jun Liu Yonggang Zhou Haiyan Li Guodong Yang Qingshan Chen Bin Liu 《Molecular Plant》 SCIE CAS CSCD 2021年第2期298-314,共17页
Soybean is an important legume crop that displays the classic shade avoidance syndrome(SAS),including exaggerated stem elongation,which leads to lodging and yield reduction under density farming conditions.Here,we com... Soybean is an important legume crop that displays the classic shade avoidance syndrome(SAS),including exaggerated stem elongation,which leads to lodging and yield reduction under density farming conditions.Here,we compared the effects of two shade signals,low red light to far-red light ratio(R:FR)and low blue light(LBL),on soybean status and revealed that LBL predominantly induces excessive stem elongation.We used CRISPR-Cas9-engineered Gmcry mutants to investigate the functions of seven cryptochromes(GmCRYs)in soybean and found that the four GmCRY1s overlap in mediating LBL-induced SAS.Lightactivated GmCRY1s increase the abundance of the bZlP transcription factors STF1 and STF2,which directly upregulate the expression of genes encoding GA2 oxidases to deactivate GA1 and repress stem elongation.Notably,GmCRY1b overexpression lines displayed multiple agronomic advantages over the wild-type control under both dense planting and intercropping conditions.Our study demonstrates the integration of GmCRY1-mediated signals with the GA metabolic pathway in the regulation of LBL-induced SAS in soybean.It also provides a promising option for breeding lodging-resistant,high-yield soybean cultivars in the future. 展开更多
关键词 CRYPTOCHROME SOYBEAN shade avoidance low blue light GIBBERELLIN
原文传递
Evaluation and analysis of intraspecific competition in maize: A case study on plant density experiment 被引量:12
8
作者 ZHAI Li-chao XIE Rui-zhi +2 位作者 MING Bo LI Shao-kun MA Da-ling 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第10期2235-2244,共10页
Intraspecific competition is a common phenomenon in agricultural production,and maize is one of the most sensitive grass species to intraspecific competition due to its low tillering ability.This study evaluated and a... Intraspecific competition is a common phenomenon in agricultural production,and maize is one of the most sensitive grass species to intraspecific competition due to its low tillering ability.This study evaluated and analyzed intraspecific competition in maize,and screened competitive indices that could be used to evaluate intraspecific competition in a maize population.A 2-year field experiment was conducted using the maize hybrid Zhongdan 2 at 12 plant densities ranging from 1.5 to 18.0 plants(pl)m-2.The results showed that the response of single-plant grain yield and dry matter at harvest to increased plant density decreased exponentially and that the harvest index decreased linearly.The response of population-level grain yield to plant density was curvilinear,producing a maximum value at the optimum population density.However,the yielddensity equation agreed well with the Steinhart-Hart equation curves,but not with the quadratic equation curves reported by most previous studies.Competitive indices are used to evaluate competition in a plant population or plant species.The present results show that competitive intensity(CI)and absolute severity of competition(ASC)increased with increasing plant density;however,relative yield(RY)and relative reproductive efficiency(RReff)decreased.The different responses of these indices reflect different aspects of competition.According to the analysis of CI,ASC,RY,and RReff,higher CI and ASC values indicate higher intraspecific competition,whereas higher RY and RReff values indirectly reflect lower intraspecific competition.These competitive indices evaluate not only the intraspecific competitive intensity under different plant densities of the same cultivar but also those of different cultivars under the same plant density.However,some overlap exists in the calculations of ASC,CI,and RY,so one could simply select any one of these indices to evaluate intraspecific competition in a maize population.In conclusion,the present study provides a method to evaluat 展开更多
关键词 MAIZE intraspecific competition plant density competitive indices grain yield
下载PDF
Natural variations of ZmSRO1d modulate the trade-off between drought resistance and yield by affecting ZmRBOHC-mediated stomatal ROS production in maize 被引量:13
9
作者 Huajian Gao Junjun Cui +12 位作者 Shengxue Liu Shuhui Wang Yongyan Lian Yunting Bai Tengfei Zhu Haohao Wu Yijie Wang Shiping Yang Xuefeng Li Junhong Zhuang Limei Chen Zhizhong Gong Feng Qin 《Molecular Plant》 SCIE CAS CSCD 2022年第10期1558-1574,共17页
While crop yields have historically increased,drought resistance has become a major concern in the context of global climate change.The trade-off between crop yield and drought resistance is a common phenomenon;howeve... While crop yields have historically increased,drought resistance has become a major concern in the context of global climate change.The trade-off between crop yield and drought resistance is a common phenomenon;however,the underlying molecular modulators remain undetermined.Through genome-wide association study,we revealed that three non-synonymous variants in a drought-resistant allele of ZmSRO1d-R resulted in plasma membrane localization and enhanced mono-ADP-ribosyltransferase activity of ZmSRO1d toward ZmRBOHC,which increased reactive oxygen species(ROS)levels in guard cells and promoted stomatal closure.ZmSRO1d-R enhanced plant drought resilience and protected grain yields under drought conditions,but it led to yield drag under favorable conditions.In contrast,loss-of-function mutants of ZmRBOHC showed remarkably increased yields under well-watered conditions,whereas they showed compromised drought resistance.Interestingly,by analyzing 189 teosinte accessions,we found that the ZmSRO1d-R allele was present in teosinte but was selected against during maize domestication and modern breeding.Collectively,our work suggests that the allele frequency reduction of ZmSRO1d-R in breeding programs may have compromised maize drought resistance while increased yields.Therefore,introduction of the ZmSRO1d-R allele into modern maize cultivars would contribute to food security under drought stress caused by global climate change. 展开更多
关键词 ZmSRO1d stomatal ROS drought resistance YIELD MAIZE
原文传递
The amazing potential of fungi:50 ways we can exploit fungi industrially 被引量:12
10
作者 Kevin D.Hyde Jianchu Xu +60 位作者 Sylvie Rapior Rajesh Jeewon Saisamorn Lumyong Allen Grace T.Niego Pranami D.Abeywickrama Janith V.S.Aluthmuhandiram Rashika S.Brahamanage Siraprapa Brooks Amornrat Chaiyasen K.W.Thilini Chethana Putarak Chomnunti Clara Chepkirui Boontiya Chuankid Nimali I.de Silva Mingkwan Doilom Craig Faulds Eleni Gentekaki Venkat Gopalan Pattana Kakumyan Dulanjalee Harishchandra Hridya Hemachandran Sinang Hongsanan Anuruddha Karunarathna Samantha C.Karunarathna Sehroon Khan Jaturong Kumla Ruvishika S.Jayawardena Jian-Kui Liu Ningguo Liu Thatsanee Luangharn Allan Patrick G.Macabeo Diana S.Marasinghe Dan Meeks Peter E.Mortimer Peter Mueller Sadia Nadir Karaba N.Nataraja Sureeporn Nontachaiyapoom Meghan O’Brien Watsana Penkhrue Chayanard Phukhamsakda Uma Shaanker Ramanan Achala R.Rathnayaka Resurreccion B.Sadaba Birthe Sandargo Binu C.Samarakoon Danushka S.Tennakoon Ramamoorthy Siva Wasan Sriprom T.S.Suryanarayanan Kanaporn Sujarit Nakarin Suwannarach Thitipone Suwunwong Benjarong Thongbai Naritsada Thongklang Deping Wei S.Nuwanthika Wijesinghe Jake Winiski Jiye Yan Erandi Yasanthika Marc Stadler 《Fungal Diversity》 SCIE 2019年第4期1-136,共136页
Fungi are an understudied,biotechnologically valuable group of organisms.Due to the immense range of habitats that fungi inhabit,and the consequent need to compete against a diverse array of other fungi,bacteria,and a... Fungi are an understudied,biotechnologically valuable group of organisms.Due to the immense range of habitats that fungi inhabit,and the consequent need to compete against a diverse array of other fungi,bacteria,and animals,fungi have developed numerous survival mechanisms.The unique attributes of fungi thus herald great promise for their application in biotechnology and industry.Moreover,fungi can be grown with relative ease,making production at scale viable.The search for fungal biodiversity,and the construction of a living fungi collection,both have incredible economic potential in locating organisms with novel industrial uses that will lead to novel products.This manuscript reviews fifty ways in which fungi can potentially be utilized as biotechnology.We provide notes and examples for each potential exploitation and give examples from our own work and the work of other notable researchers.We also provide a flow chart that can be used to convince funding bodies of the importance of fungi for biotechnological research and as potential products.Fungi have provided the world with penicillin,lovastatin,and other globally significant medicines,and they remain an untapped resource with enormous industrial potential. 展开更多
关键词 BIOCONTROL Biodiversity BIOTECHNOLOGY Food FUNGI MUSHROOMS
原文传递
A cryptic inhibitor of cytokinin phosphorelay controls rice grain size 被引量:12
11
作者 Dapu Liu He Zhao +9 位作者 Yunhua Xiao Guoxia Zhang Shouyun Cao Wenchao Yin Yangwen Qian Yanhai Yin Jinsong Zhang Shouyi Chen Chengcai Chu Hongning Tong 《Molecular Plant》 SCIE CAS CSCD 2022年第2期293-307,共15页
Plant hormone cytokinin signals through histidine-aspartic acid(H-D)phosphorelay to regulate plant growth and development.While it is well known that the phosphorelay involves histidine kinases,histidine phosphotransf... Plant hormone cytokinin signals through histidine-aspartic acid(H-D)phosphorelay to regulate plant growth and development.While it is well known that the phosphorelay involves histidine kinases,histidine phosphotransfer proteins(HPs),and response regulators(RRs),how this process is regulated by external components remains unknown.Here we demonstrate that protein phosphatase with kelch-like domains(PPKL1),known as a signaling component of steroid hormone brassinosteroid,is actually a cryptic inhibitor of cytokinin phosphorelay in rice(Oryza sativa).Mutation at a specific amino acid D364 of PPKL1 activates cytokinin response and thus enlarges grain size in a semi-dominant mutant named s48.Overexpression of PPKL1 containing D364,either with the deletion of the phosphatase domain or not,rescues the s48 mutant phenotype.PPKL1 interacts with OsAHP2,one of authentic HPs,and D364 resides in a region resembling the receiver domain of RRs.Accordingly,PPKL1 can utilize D364 to suppress OsAHP2-to-RR phosphorelay,whereas mutation of D364 abolishes the effect.This function of PPKL1 is independent of the phosphatase domain that is required for brassinosteroid signaling.Importantly,editing of the D364-residential region produces a diversity of semi-dominant mutations associated with variously increased grain sizes.Further screening of the edited plants enables the identification of two genotypes that confer significantly improved grain yield.Collectively,our study uncovers a noncanonical cytokinin signaling suppressor and provides a robust tool for seed rational design. 展开更多
关键词 CYTOKININ BRASSINOSTEROID grain size signaling PPKL1 RICE
原文传递
Dissection of a rapidly evolving wheat resistance gene cluster by long-read genome sequencing accelerated the cloning of Pm69 被引量:5
12
作者 Yinghui Li Zhen-Zhen Wei +16 位作者 Hanan Sela Liubov Govta Valentyna Klymiuk Rajib Roychowdhury Harmeet Singh Chawla Jennifer Ens Krystalee Wiebe Valeria Bocharova Roi Ben-David Prerna B.Pawar Yuqi Zhang Samidha Jaiwar Istvan Molnar Jaroslav Dolezel Gitta Coaker Curtis J.Pozniak Tzion Fahima 《Plant Communications》 SCIE CSCD 2024年第1期69-83,共15页
Gene cloning in repeat-rich polyploid genomes remains challenging.Here,we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene(R-gene)Pm69 derived from tetraploid wild ... Gene cloning in repeat-rich polyploid genomes remains challenging.Here,we describe a strategy for overcoming major bottlenecks in cloning of the powdery mildew resistance gene(R-gene)Pm69 derived from tetraploid wild emmer wheat.A conventional positional cloning approach was not effective owing to suppressed recombination.Chromosome sorting was compromised by insufficient purity.A Pm69 physical map,constructed by assembling Oxford Nanopore Technology(ONT)long-read genome sequences,revealed a rapidly evolving nucleotide-binding leucine-rich repeat(NLR)R-gene cluster with structural variations.A single candidate NLR was identified by anchoring RNA sequencing reads from susceptible mutants to ONT contigs and was validated by virus-induced gene silencing.Pm69 is likely a newly evolved NLR and was discovered in only one location across the wild emmer wheat distribution range in Israel.Pm69 was successfully introgressed into cultivated wheat,and a diagnostic molecular marker was used to accelerate its deployment and pyramiding with other R-genes. 展开更多
关键词 cluster resistance Israel
原文传递
Abundance and Diversity of RuBisCO Genes Responsible for CO_2 Fixation in Arid Soils of Northwest China 被引量:10
13
作者 TANG Zhi-Xi FAN Fen-Liang +2 位作者 WAN Yun-Fan WEI Wei LAI Li-Ming 《Pedosphere》 SCIE CAS CSCD 2015年第1期150-159,共10页
Arid soils where water and nutrients are scarce occupy over 30% of the Earth's total surface. However, the microbial autotrophy in the harsh environments remains largely unexplored. In this study, the abundance an... Arid soils where water and nutrients are scarce occupy over 30% of the Earth's total surface. However, the microbial autotrophy in the harsh environments remains largely unexplored. In this study, the abundance and diversity of autotrophic bacteria were investigated, by quantifying and profiling the large subunit genes of ribulose-1,5-bisphosphate carboxylase/oxygenase(Ru Bis CO) form I(cbb L) responsible for CO2 fixation, in the arid soils under three typical plant types(Haloxylon ammodendron, Cleistogenes chinensis,and Reaumuria soongorica) in Northwest China. The bacterial communities in the soils were also characterized using the 16 S r RNA gene. Abundance of red-like autotrophic bacteria ranged from 3.94 × 105 to 1.51 × 106 copies g-1dry soil and those of green-like autotrophic bacteria ranged from 1.15 × 106 to 2.08 × 106 copies g-1dry soil. Abundance of both red- and green-like autotrophic bacteria did not significantly differ among the soils under different plant types. The autotrophic bacteria identified with the cbb L gene primer were mainly affiliated with Alphaproteobacteria, Betaproteobacteria and an uncultured bacterial group, which were not detected in the 16 S r RNA library. In addition, 25.9% and 8.1% of the 16 S r RNA genes were affiliated with Cyanobacteria in the soils under H. ammodendron and R. soongorica, respectively. However, no Cyanobacteria-affiliated cbb L genes were detected in the same soils. The results suggested that microbial autotrophic CO2 fixation might be significant in the carbon cycling of arid soils, which warrants further exploration. 展开更多
关键词 autotrophic bacteria carbon cycling cbb L harsh environments real-time polymerase chain reaction
原文传递
Fungal diversity notes 367-490:taxonomic and phylogenetic contributions to fungal taxa 被引量:7
14
作者 Kevin D.Hyde Sinang Hongsanan +88 位作者 Rajesh Jeewon D.Jayarama Bhat Eric H.C.McKenzie E.B.Gareth Jones Rungtiwa Phookamsak Hiran A.Ariyawansa Saranyaphat Boonmee Qi Zhao Faten Awad Abdel-Aziz Mohamed A.Abdel-Wahab Supharat Banmai Putarak Chomnunti Bao-Kai Cui Dinushani A.Daranagama Kanad Das Monika C.Dayarathne Nimali Ide Silva Asha J.Dissanayake Mingkwan Doilom Anusha H.Ekanayaka Tatiana Baptista Gibertoni Aristóteles Góes-Neto Shi-Ke Huang Subashini C.Jayasiri Ruvishika S.Jayawardena Sirinapa Konta Hyang Burm Lee Wen-Jing Li Chuan-Gen Lin Jian-Kui Liu Yong-Zhong Lu Zong-Long Luo Ishara S.Manawasinghe Patinjareveettil Manimohan Ausana Mapook Tuula Niskanen Chada Norphanphoun Moslem Papizadeh Rekhani H.Perera Chayanard Phukhamsakda Christian Richter AndréL.C.Mde A.Santiago E.Ricardo Drechsler-Santos Indunil C.Senanayake Kazuaki Tanaka T.M.D.S.Tennakoon Kasun M.Thambugala Qing Tian Saowaluck Tibpromma Benjarong Thongbai Alfredo Vizzini Dhanushka N.Wanasinghe Nalin N.Wijayawardene Hai-Xia Wu Jing Yang Xiang-Yu Zeng Huang Zhang Jin-Feng Zhang Timur S.Bulgakov Erio Camporesi Ali H.Bahkali Mohammad A.Amoozegar Lidia Silva Araujo-Neta Joseph F.Ammirati Abhishek Baghela R.P.Bhatt Dimitar Bojantchev Bart Buyck Gladstone Alves da Silva Catarina Letícia Ferreira de Lima Rafael JoséVilela de Oliveira Carlos Alberto Fragoso de Souza Yu-Cheng Dai Bálint Dima Tham Thi Duong Enrico Ercole Fernando Mafalda-Freire Aniket Ghosh Akira Hashimoto Sutakorn Kamolhan Ji-Chuan Kang Samantha C.Karunarathna Paul M.Kirk Ilkka Kytovuori Angela Lantieri Kare Liimatainen Zuo-Yi Liu Xing-Zhong Liu Robert Lückin 《Fungal Diversity》 SCIE 2016年第5期1-270,共270页
This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their ... This is a continuity of a series of taxonomic papers where materials are examined,described and novel combinations are proposed where necessary to improve our traditional species concepts and provide updates on their classification.In addition to extensive morphological descriptions and appropriate asexual and sexual connections,DNA sequence data are also analysed from concatenated datasets(rDNA,TEF-a,RBP2 and b-Tubulin)to infer phylogenetic relationships and substantiate systematic position of taxa within appropriate ranks.Wherever new species or combinations are being proposed,we apply an integrative approach(morphological and molecular data as well as ecological features wherever applicable).Notes on 125 fungal taxa are compiled in this paper,including eight new genera,101 new species,two new combinations,one neotype,four reference specimens,new host or distribution records for eight species and one alternative morphs.The new genera introduced in this paper are Alloarthopyrenia,Arundellina,Camarosporioides,Neomassaria,Neomassarina,Neotruncatella,Paracapsulospora and Pseudophaeosphaeria.The new species are Alfaria spartii,Alloarthopyrenia italica,Anthostomella ravenna,An.thailandica,Arthrinium paraphaeospermum,Arundellina typhae,Aspergillus koreanus,Asterina cynometrae,Bertiella ellipsoidea,Blastophorum aquaticum,Cainia globosa,Camarosporioides phragmitis,Ceramothyrium menglunense,Chaetosphaeronema achilleae,Chlamydotubeufia helicospora,Ciliochorella phanericola,Clavulinopsis aurantiaca,Colletotrichum insertae,Comoclathris italica,Coronophora myricoides,Cortinarius fulvescentoideus,Co.nymphatus,Co.pseudobulliardioides,Co.tenuifulvescens,Cunninghamella gigacellularis,Cyathus pyristriatus,Cytospora cotini,Dematiopleospora alliariae,De.cirsii,Diaporthe aseana,Di.garethjonesii,Distoseptispora multiseptata,Dis.tectonae,Dis.tectonigena,Dothiora buxi,Emericellopsis persica,Gloniopsis calami,Helicoma guttulatum,Helvella floriforma,H.oblongispora,Hermatomyces subiculosa,Juncaceicola italica,Lactarius dirkii,Lentithecium 展开更多
关键词 ASCOMYCOTA BASIDIOMYCOTA DOTHIDEOMYCETES Mortierellomycotina Mucoromycotina Pezizomycetes Phylogeny Taxonomy New genus New species New host records
原文传递
Identification of quantitative trait loci for the dead leaf rate and the seedling dead rate under alkaline stress in rice 被引量:8
15
作者 Dongling Qi Guizhen Guo +6 位作者 Myung-chul Lee Junguo Zhang Guilan Cao Sanyuan Zhang Seok-cheol Suh Qingyang Zhou Longzhi Han 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第5期299-305,共7页
The quantitative trait loci (QTLs) for the dead leaf rate (DLR) and the dead seedling rate (DSR) at the different rice growing periods after transplanting under alkaline stress were identified using an F2:3 pop... The quantitative trait loci (QTLs) for the dead leaf rate (DLR) and the dead seedling rate (DSR) at the different rice growing periods after transplanting under alkaline stress were identified using an F2:3 population, which included 200 individuals and lines derived from a cross between two japonica rice cultivars Gaochan 106 and Changbai 9 with microsatellite markers. The DLR detected at 20 days to 62 days after transplanting under alkaline stress showed continuous normal or near normal distributions in F3 lines, which was the quantitative trait controlled by multiple genes. The DSR showed a continuous distribution with 3 or 4 peaks and was the quantitative trait controlled by main and multiple genes when rice was grown for 62 days after transplanting under alkaline stress. Thirteen QTLs associated with DLR were detected at 20 days to 62 days after transplanting under alkaline stress. Among these, qDLR9-2 located in RM5786-RM160 on chromosome 9 was detected at 34 days, 41 days, 48 days, 55 days, and 62 days, respectively; qDLR4 located in RM3524-RM3866 on chromosome 4 was detected at 34 days, 41 days, and 48 days, respectively; qDLR7-1 located in RM3859-RM320 on chromosome 7 was detected at 20 days and 27 days; and qDLR6-2 in RM1340-RM5957 on chromosome 6 was detected at 55 days and 62 days, respectively. The alleles of both qDLR9-2 and qDLR4 were derived from alkaline sensitive parent "Gaochanl06". The alleles of both qDLR7-1 and qDLR6-2 were from alkaline tolerant parent Changbai 9. These gene actions showed dominance and over dominance primarily. Six QTLs associated with DSR were detected at 62 days after transplanting under alkaline stress. Among these, qDSR6-2 and qDSR8 were located in RM1340-RM5957 on chromosome 6 and in RM3752-RM404 on chromosome 8, respectively, which were associated with DSR and accounted for 20.32% and 18.86% of the observed phenotypic variation, respectively; qDSR11-2 and qDSR11-3 were located in RM536-RM479 and RM2596-RM286 on chromosome 11, respectively, which wer 展开更多
关键词 RICE alkaline stress dead leaf rate dead seedling rate microsatellite marker quantitative trait locus (QTL)
下载PDF
Genome resources for the elite bread wheat cultivar Aikang 58 and mining of elite homeologous haplotypes for accelerating wheat improvement 被引量:4
16
作者 Jizeng Jia Guangyao Zhao +25 位作者 Danping Li Kai Wang Chuizheng Kong Pingchuan Deng Xueqing Yan Xueyong Zhang Zefu Lu Shujuan Xu Yuannian Jiao Kang Chong Xu Liu Dangqun Cui Guangwei Li Yijing Zhang Chunguang Du Liang Wu Tianbao Li Dong Yan Kehui Zhan Feng Chen Zhiyong Wang Lichao Zhang Xiuying Kong Zhengang Ru Daowen Wang Lifeng Gao 《Molecular Plant》 SCIE CSCD 2023年第12期1893-1910,共18页
Despite recent progress in crop genomics studies,the genomic changes brought about by modern breeding selection are still poorly understood,thus hampering genomics-assisted breeding,especially in polyploid crops with ... Despite recent progress in crop genomics studies,the genomic changes brought about by modern breeding selection are still poorly understood,thus hampering genomics-assisted breeding,especially in polyploid crops with compound genomes such as common wheat(Triticum aestivum).In this work,we constructed genome resources for the modern elite common wheat variety Aikang 58(AK58).Comparative genomics between AK58 and the landrace cultivar Chinese Spring(CS)shed light on genomic changes that occurred through recent varietal improvement.We also explored subgenome diploidization and divergence in common wheat and developed a homoeologous locus-based genome-wide association study(HGWAS)approach,which was more effective than single homoeolog-based GWAS in unraveling agronomic trait-associated loci.A total of 123 major HGWAs loci were detected using a genetic population derived from AK58 and cs.Elite homoeologous haplotypes(HHs),formed by combinations of subgenomic homoeologs of the associated loci,were found in both parents and progeny,and many could substantially improve wheat yield and related traits.We built a website where users can download genome assembly sequence and annotation data for AK58,perform blast analysis,and run JBrowse.Our work enriches genome resources for wheat,provides new insights into genomic changes during modern wheat improve-.ment,and suggests that efficientmining of elite HHs can make a substantial contribuutionto genomics-assisted breeding in common wheat and other polyploid crops. 展开更多
关键词 common wheat genome sequencing subgenome diploidization and divergence homoeologous Iocus-based GWAs homoeologous haplotypes polyploid crops
原文传递
Food legume production in China 被引量:9
17
作者 Ling Li Tao Yang +3 位作者 Rong Liu Bob Redden Fouad Maalouf Xuxiao Zong 《The Crop Journal》 SCIE CAS CSCD 2017年第2期115-126,共12页
Food legumes comprise all legumes grown for human food in China as either dry grains or vegetables,except for soybean and groundnut.China has a vast territory with complex ecological conditions.Rotation,intercropping,... Food legumes comprise all legumes grown for human food in China as either dry grains or vegetables,except for soybean and groundnut.China has a vast territory with complex ecological conditions.Rotation,intercropping,and mixed cropping involving pulses are normal cropping systems in China.Whether indigenous or introduced crops,pulses have played an important role in Chinese cropping systems and made an important contribution to food resources for humans since ancient times.The six major food legume species(pea,faba bean,common bean,mung bean,adzuki bean,and cowpea) are the most well-known pulses in China,as well as those with more local distributions;runner bean,lima bean,chickpea,lentil,grass pea,lupine,rice bean,black gram,hyacinth bean,pigeon pea,velvet bean,winged bean,guar bean,sword bean,and jack bean.China has remained the world's leading producer of peas,faba beans,mung beans,and adzuki beans in recent decades,as documented by FAO statistics and China Agriculture Statistical Reports.The demand for food legumes as a healthy food will markedly increase with the improvement of living standards in China.Since China officially joined the World Trade Organization(WTO) in2001,imports of pea from Canada and Australia have rapidly increased,resulting in reduced prices for dry pea and other food legumes.With reduced profits for food legume crops,their sowing area and total production has decreased within China.At the same time,the rising consumer demand for vegetable food legumes as a healthy food has led to attractive market prices and sharp production increases in China.Vegetable food legumes have reduced growing duration and enable flexibility in cropping systems.In the future,production of dry food legumes will range from stable to slowly decreasing,while production of vegetable food legumes will continue to increase. 展开更多
关键词 Food legumes PRODUCTION Cropping systems Trends China
下载PDF
Shade stress decreases stem strength of soybean through restraining lignin biosynthesis 被引量:9
18
作者 LIU Wei-guo Sajad Hussain +6 位作者 LIU Ting ZOU Jun-lin REN Meng-lu ZHOU Tao LIU Jiang YANG Feng YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2019年第1期43-53,共11页
Lodging is the most important constraint for soybean growth at seedling stage in maize-soybean relay strip intercropping system.In the field experiments,three soybean cultivars Nandou 032-4(shade susceptible cultivar;... Lodging is the most important constraint for soybean growth at seedling stage in maize-soybean relay strip intercropping system.In the field experiments,three soybean cultivars Nandou 032-4(shade susceptible cultivar; B1),Jiuyuehuang(moderately shade tolerant cultivar; B2),and Nandou 12(shade tolerant cultivar; B3) were used to evaluate the relationship between stem stress and lignin metabolism in the stem of soybean.Results showed that the intercropped soybean was in variable light condition throughout the day time and co-growth stage with maize.The xylem area and cross section ratio played a main role to form the stem stress.The B3 both in intercropping and monocropping expressed a high stem stress with higher xylem area,lignin content,and activity of enzymes(phenylalanine ammonia-lyase(PAL),4-coumarate: CoA ligase(4CL),cinnamyl alcohol dehydrogenase(CAD),and peroxidase(POD)) than those of B1 and B2.Among the soybean cultivars and planting pattern,lignin content was positively correlated with stem stress.However,a negative correlation was found between lignin content and actual rate of lodging.In conclusion,the shade tolerant soybean cultivar had larger xylem area,higher lignin content and activities of CAD,4CL,PAL,and POD than other soybean cultivars in intercropping.The lodging in maize-soybean intercropping can be minimized by planting shade tolerant and lodging resistant cultivar of soybean.The lignin content in stem could be a useful indicator for the evaluation of lodging resistance of soybean in intercropping and activities of enzymes were the key factors that influence the lignin biosynthesis. 展开更多
关键词 INTERCROPPING GENOTYPE GLYCINE max LIGNIN accumulation SHADE stress
下载PDF
A complete reference genome assembly for foxtail millet and Setaria-db, a comprehensive database for Setaria 被引量:3
19
作者 Qiang He Chunchao Wang +12 位作者 Qiang He Jun Zhang Hongkai Liang Zefu Lui Kun Xie Sha Tang Yuhan Zhou Bin Liu Hui Zhi Guanqing Jia Ganggang Guo Huilong Du Xianmin Diao 《Molecular Plant》 SCIE CSCD 2024年第2期219-222,共4页
Dear Editor,,Foxtail millet(Setaria italica)and its wild ancestor green foxtail(S.viridis),are two C4 genetic model plants known for their desirable traits,such as small size,short life cycle,ease of transformation,an... Dear Editor,,Foxtail millet(Setaria italica)and its wild ancestor green foxtail(S.viridis),are two C4 genetic model plants known for their desirable traits,such as small size,short life cycle,ease of transformation,and a compact genome size(~420 Mb)(He et al.,2023).Foxtail millet stands out as the only cultivated species within the Setaria genus.As a foundational crop for ancient east Asian agriculture civilization,it possesses remarkable drought and soil-nutrient deficiency tolerance. 展开更多
关键词 COMPREHENSIVE soil CULTIVATED
原文传递
Development of herbicide resistance genes and their application in rice 被引量:8
20
作者 Man Jin Lei Chen +1 位作者 Xing Wang Deng Xiaoyan Tang 《The Crop Journal》 SCIE CSCD 2022年第1期26-35,共10页
Rice is one of the most important food crops in the world.Weeds seriously affect the rice yield and grain quality.In recent years,there are tremendous progresses in the research and application of herbicideresistant g... Rice is one of the most important food crops in the world.Weeds seriously affect the rice yield and grain quality.In recent years,there are tremendous progresses in the research and application of herbicideresistant genes in rice worldwide.This article reviews the working mechanisms of six herbicides(glyphosate,glufosinate,acetolactate synthase inhibitor herbicides,acetyl-Co A carboxylase inhibitor herbicides,hydroxyhenylpyruvate dioxygenase(HPPD)inhibitor herbicides and dinitroaniline herbicides),the resistance mutations of the corresponding herbicide-target genes,and the herbicide detoxification mechanisms by non-target genes.Examples are provided on herbicide-resistant rice materials obtained by transformation of exogenous resistance genes,by artificial mutagenesis and mutant screening,and by modifying the target genes through gene editing.This paper also introduces the current application of herbicide-resistant rice,points out problems that may be caused by utilization of herbicide resistant rice and solutions to the problems,and discusses the future prospects for the development of herbicideresistant rice. 展开更多
关键词 RICE HERBICIDES Herbicide resistant genes Gene editing MUTANT
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部