期刊文献+
共找到2,251篇文章
< 1 2 113 >
每页显示 20 50 100
Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight 被引量:259
1
作者 Jianfeng Weng Suhai Gu +11 位作者 Xiangyuan Wan He Gao Tao Guo Ning Su Cailin Lei Xin Zhang Zhijun Cheng Xiuping Guo Jiulin Wang Ling Jiang Huqu Zhai Jianmin Wan 《Cell Research》 SCIE CAS CSCD 2008年第12期1199-1209,共11页
Grain weight is a major determinant of crop grain yield and is controlled by naturally occurring quantitative trait loci (QTLs). We earlier identified a major QTL that controls rice grain width and weight, GW5, whic... Grain weight is a major determinant of crop grain yield and is controlled by naturally occurring quantitative trait loci (QTLs). We earlier identified a major QTL that controls rice grain width and weight, GW5, which was mapped to a recombination hotspot on rice chromosome 5. To gain a better understanding of how GW5 controls rice grain width, we conducted fine mapping of this locus and uncovered a 1 212-bp deletion associated with the increased grain width in the rice cultivar Asominori, in comparison with the slender grain rice IR24. In addition, genotyping analyses of 46 rice cultivars revealed that this deletion is highly correlated with the grain-width phenotype, suggesting that the GW5 deletion might have been selected during rice domestication. GW5 encodes a novel nuclear protein of 144 amino acids that is localized to the nucleus. Furthermore, we show that GW5 physically interacts with polyubiquitin in a yeast two-hybrid assay. Together, our results suggest that GW5 represents a major QTL underlying rice width and weight, and that it likely acts in the ubiquitin-proteasome pathway to regulate cell division during seed development. This study provides novel insights into the molecular mechanisms controlling rice grain development and suggests that GW5 could serve as a potential tool for high-yield breeding of crops. 展开更多
关键词 GW5 QTL grain width and weight DOMESTICATION POLYUBIQUITIN rice (Oryza sativa L.)
下载PDF
QTL IciMapping:Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations 被引量:215
2
作者 Lei Meng Huihui Li +1 位作者 Luyan Zhang Jiankang Wang 《The Crop Journal》 SCIE CAS CSCD 2015年第3期269-283,共15页
QTL Ici Mapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci(QTL) in biparental populations. Eight functionalities are integrated in this softwa... QTL Ici Mapping is freely available public software capable of building high-density linkage maps and mapping quantitative trait loci(QTL) in biparental populations. Eight functionalities are integrated in this software package:(1) BIN: binning of redundant markers;(2) MAP: construction of linkage maps in biparental populations;(3) CMP: consensus map construction from multiple linkage maps sharing common markers;(4) SDL: mapping of segregation distortion loci;(5) BIP: mapping of additive, dominant, and digenic epistasis genes;(6) MET: QTL-by-environment interaction analysis;(7) CSL: mapping of additive and digenic epistasis genes with chromosome segment substitution lines; and(8) NAM: QTL mapping in NAM populations. Input files can be arranged in plain text, MS Excel 2003, or MS Excel 2007 formats. Output files have the same prefix name as the input but with different extensions. As examples, there are two output files in BIN, one for summarizing the identified bin groups and deleted markers in each bin, and the other for using the MAP functionality. Eight output files are generated by MAP, including summary of the completed linkage maps, Mendelian ratio test of individual markers, estimates of recombination frequencies, LOD scores, and genetic distances, and the input files for using the BIP, SDL,and MET functionalities. More than 30 output files are generated by BIP, including results at all scanning positions, identified QTL, permutation tests, and detection powers for up to six mapping methods. Three supplementary tools have also been developed to display completed genetic linkage maps, to estimate recombination frequency between two loci,and to perform analysis of variance for multi-environmental trials. 展开更多
关键词 Biparental POPULATIONS MAP CONSTRUCTION QTL MAPPING SOFTWARE
下载PDF
Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination 被引量:118
3
作者 Kai Shu Xiao-dong Liu +1 位作者 Qi Xie Zu-hua He 《Molecular Plant》 SCIE CAS CSCD 2016年第1期34-45,共12页
Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dorman... Seed plants have evolved to maintain the dormancy of freshly matured seeds until the appropriate time for germination. Seed dormancy and germination are distinct physiological processes, and the transition from dormancy to germination is not only a critical developmental step in the life cycle of plants but is also impor- tant for agricultural production. These processes are precisely regulated by diverse endogenous hormones and environmental cues. Although ABA (abscisic acid) and GAs (gibberellins) are known to be the primary phytohormones that antagonistically regulate seed dormancy, recent findings demonstrate that another phytohormone, auxin, is also critical for inducing and maintaining seed dormancy, and therefore might act as a key protector of seed dormancy. In this review, we summarize our current understanding of the sophisticated molecular networks involving the critical roles of phytohormones in regulating seed dormancy and germination, in which AP2-domain-containing transcription factors play key roles. We also discuss the interactions (crosstalk) of diverse hormonal signals in seed dormancy and germination, focusing on the ABA/GA balance that constitutes the central node. 展开更多
关键词 seed dormancy GERMINATION ABA GA AUXIN CROSSTALK
原文传递
Challenge and Opportunity in Improving Fertilizer-nitrogen Use Efficiency of Irrigated Rice in China 被引量:88
4
作者 Roland Buresh Christian Witt 《Agricultural Sciences in China》 CAS CSCD 2002年第7期776-785,共10页
Today, about 30% of world nitrogen (N) fertilizer is consumed by China. Rice crops in China consume about 37% of the total N fertilizer used for rice production in the world. Average rate of N application for rice pro... Today, about 30% of world nitrogen (N) fertilizer is consumed by China. Rice crops in China consume about 37% of the total N fertilizer used for rice production in the world. Average rate of N application for rice production in China is high and fertilizer-N use efficiency is low compared with other major rice growing countries. Research progresses have been made internationally and domestically on the application method, fertilizer-N sources, computer-based decision support systems, and real-time N management in order 展开更多
关键词 Fertilizer-nitrogen use efficiency Nitrogen management RICE
下载PDF
Functions and Application of the AP2/ERF Transcription Factor Family in Crop Improvement 被引量:91
5
作者 Zhao-Shi Xu Ming Chen Lian-Cheng Li You-Zhi Ma 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2011年第7期570-585,共16页
Plants have acquired sophisticated stress response systems to adapt to changing environments. It is important to understand plants' stress response mechanisms in the effort to improve crop productivity under stressfu... Plants have acquired sophisticated stress response systems to adapt to changing environments. It is important to understand plants' stress response mechanisms in the effort to improve crop productivity under stressful conditions. The AP2/ERF transcription factors are known to regulate diverse processes of plant development and stress responses. In this study, the molecular characteristics and biological functions of AP2/ERFs in a variety of plant species were analyzed. AP2/ERFs, especially those in DREB and ERF subfamilies, are ideal candidates for crop improvement because their overexpression enhances tolerances to drought, salt, freezing, as well as resistances to multiple diseases in the transgenic plants. The comprehensive analysis of physiological functions is useful in elucidating the biological roles of AP2/ERF family genes in gene interaction, pathway regulation, and defense response under stress environments, which should provide new opportunities for the crop tolerance engineering. 展开更多
关键词 AP2/ERF gene regulation signal pathway stress tolerance transgenic plant
原文传递
Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System 被引量:79
6
作者 Jingying Li Yongwei Sun +2 位作者 Jinlu Du Yunde Zhao Lanqin Xia 《Molecular Plant》 SCIE CAS CSCD 2017年第3期526-529,共4页
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palin- dromic Repeats/CRISPR-associated Cas9 endonuclease)- mediated genome editing has revolutionized biological research and crop improvement because of its speci... CRISPR/Cas9 (Clustered Regularly Interspaced Short Palin- dromic Repeats/CRISPR-associated Cas9 endonuclease)- mediated genome editing has revolutionized biological research and crop improvement because of its specificity, simplicity, and versatility (reviewed in Komor et al., 2016a). 展开更多
原文传递
CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review 被引量:77
7
作者 Elizabeth D.Wagner Michael J.Plewa 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第8期64-76,共13页
The disinfection of drinking water is an important public health service that generates high quality, safe and palatable tap water. The disinfection of drinking water to reduce waterborne disease was an outstanding pu... The disinfection of drinking water is an important public health service that generates high quality, safe and palatable tap water. The disinfection of drinking water to reduce waterborne disease was an outstanding public health achievement of the 20 th century.An unintended consequence is the reaction of disinfectants with natural organic matter,anthropogenic contaminants and bromide/iodide to form disinfection by-products(DBPs).A large number of DBPs are cytotoxic, neurotoxic, mutagenic, genotoxic, carcinogenic and teratogenic. Epidemiological studies demonstrated low but significant associations between disinfected drinking water and adverse health effects. The distribution of DBPs in disinfected waters has been well defined by advances in high precision analytical chemistry. Progress in the analytical biology and toxicology of DBPs has been forthcoming.The objective of this review was to provide a detailed presentation of the methodology for the quantitative, comparative analyses on the induction of cytotoxicity and genotoxicity of103 DBPs using an identical analytical biological platform and endpoints. A single Chinese hamster ovary cell line was employed in the assays. The data presented are derived from papers published in the literature as well as additional new data and represent the largest direct quantitative comparison on the toxic potency of both regulated and emerging DBPs.These data may form the foundation of novel research to define the major forcing agents of DBP-mediated toxicity in disinfected water and may play an important role in achieving the goal of making safe drinking water better. 展开更多
关键词 DBPs Mammalian cell cytotoxicity Mammalian cell genotoxicity
原文传递
TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining 被引量:69
8
作者 Chengjie Chen Ya Wu +8 位作者 Jiawei Li Xiao Wang Zaohai Zeng Jing Xu Yuanlong Liu Junting Feng Hao Chen Yehua He Rui Xia 《Molecular Plant》 SCIE CSCD 2023年第11期1733-1742,共10页
Since the official release of the stand-alone bioinformatics toolkit TBtools in 2020,its superior functionality in data analysis has been demonstrated by its widespread adoption by many thousands of users and referenc... Since the official release of the stand-alone bioinformatics toolkit TBtools in 2020,its superior functionality in data analysis has been demonstrated by its widespread adoption by many thousands of users and references in more than 5000 academic articles.Now,TBtools is a commonly used tool in biological laboratories.Over the past 3 years,thanks to invaluable feedback and suggestions from numerous users,we have optimized and expanded the functionality of the toolkit,leading to the development of an upgraded version—TBtools-II.In this upgrade,we have incorporated over 100 new features,such as those for comparative genomics analysis,phylogenetic analysis,and data visualization.Meanwhile,to better meet the increasing needs of personalized data analysis,we have launched the plugin mode,which enables users to develop their own plugins and manage their selection,installation,and removal according to individual needs.To date,the plugin store has amassed over 50 plugins,with more than half of them being independently developed and contributed by TBtools users.These plugins offer a range of data analysis options including co-expression network analysis,single-cell data analysis,and bulked segregant analysis sequencing data analysis.Overall,TBtools is now transforming from a stand-alone software to a comprehensive bioinformatics platform of a vibrant and cooperative community in which users are also developers and contributors.By promoting the theme“one for all,all for one”,we believe that TBtools-II will greatly benefit more biological researchers in this big-data era. 展开更多
关键词 TBtools-ll PLUGIN biological big data BSA-seq
原文传递
XA23 Is an Executor R Protein and Confers Broad-Spectrum Disease Resistance in Rice 被引量:67
9
作者 Chunlian Wang Xiaoping Zhang +10 位作者 Yinglun Fan Ying Gao Qinlong Zhu Chongke Zheng Tengfei Qin Yanqiang Li Jinying Che Mingwei Zhang Bing Yang Yaoguang Liu Kaijun Zhao 《Molecular Plant》 SCIE CAS CSCD 2015年第2期290-302,共13页
The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no consider... The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike XalO, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen. 展开更多
关键词 XA23 executor R gene TAL effector Xanthomonas oryzae pv. oryzae AvrXa23 RICE
原文传递
A Novel QTL qTGW3 Encodes the GSK3/ SHAGGY-Like Kinase OsGSK5/OsSK41 that Interacts with OsARF4 to Negatively Regulate Grain Size and Weight in Rice 被引量:61
10
作者 Zejun Hu Sun-Jie Lu +13 位作者 Mei-Jing Wang Haohua He Le Sun Hongru Wang Xue-Huan Liu Ling Jiang Jing-Liang sun Xiaoyun Xin Wei Kong Chengcai Chu Hong-Wei Xue Jinshui Yang Xiaojin Luo Jian-Xiang Liu 《Molecular Plant》 SCIE CAS CSCD 2018年第5期736-749,共14页
Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, e... Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, encodes OsSK41 (also known as OsGSK5), a member of the GLYCOGEN SYNTHASE KINASE 3/SHAGGY-like family. Rice near-isogenic lines carrying the loss-of-function allele of OsSK41 have increased grain length and weight. We demonstrate that OsSK41 interacts with and phosphorylates AUXIN RESPONSE FACTOR 4 (OsARF4). Co-expression of OsSK41 with OsARF4 increases the accumulation of OsARF4 in rice protoplasts. Loss of function of OsARF4 results in larger rice grains. RNA-sequencing analysis suggests that OsARF4 and OsSK41 repress the expression of a common set of downstream genes, including some auxin-responsive genes, during rice grain development. The loss-of-function form of OsSK41 at qTGW3 represents a rare allele that has not been extensively utilized in rice breeding. Suppression of OsSK41 function by either targeted gene editing or QTL pyramiding enhances rice grain size and weight. Thus, our study reveals the important role of OsSK41 in rice grain development and provides new candidate genes for genetic improvement of grain yield in rice and perhaps in other cereal crops. 展开更多
关键词 QTL mapping GSK3-like family protein OsGSK5 OsARF4 grain size and weight Oryza sativa
原文传递
Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: A Review 被引量:61
11
作者 MENG Qingfeng YUE Shanchao +2 位作者 HOU Peng CUI Zhenling CHEN Xinping 《Pedosphere》 SCIE CAS CSCD 2016年第2期137-147,共11页
Achieving both high yield and high nitrogen use efficiency (NUE) simultaneously has become a major challenge with increased global demand for food, depletion of natural resources, and deterioration of environment. A... Achieving both high yield and high nitrogen use efficiency (NUE) simultaneously has become a major challenge with increased global demand for food, depletion of natural resources, and deterioration of environment. As the greatest consumers of N fertilizer in the world, Chinese farmers have overused N, and there has been poor synchrony between crop N demand and N supply because of limited understanding of the N uptake-yield relationship. To address this problem, this study evaluated the total and dynamic N requirement for different yield ranges of two major crops (maize and wheat), and suggested improvements to N management strategies. Whole-plant N aboveground uptake requirement per grain yield (Nreq) initially deceased with grain yield improvement and then stagnated, and yet most farmers still believed that more fertilizer and higher grain yield were synonymous. When maize yield increased from 〈 7.5 to 〉 12.0 Mg ha-I, Nreq decreased from 19.8 to 17.0 kg Mg-1 grain. For wheat, it decreased from 27.1 kg Mg-1 grain for grain yield 〈 4.5 Mg ha-1 to 22.7 kg Mg-1 grain for yield 〉 9.0 Mg ha-1. Meanwhile, the percentage of dry matter and N accumulation in the middle-late growing season increased significantly with grain yield, which indicated that N fertilization should be concentrated in the middle-late stage to match crop demand while farmers often applied the majority of N fertilizer either before sowing or during early growth stages. We accordingly developed an integrated soil-crop system management strategy that simultaneously increases both grain yield and NUE. 展开更多
关键词 crop N requirement high yield integrated soil-crop system management N application timing N demand
原文传递
Role of the Arabidopsis thafiana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses 被引量:60
12
作者 Qingyun Bu Hongling Jiang +6 位作者 Chang-Bao Li Qingzhe Zhai Jie Zhang Xiaoyan Wu Jiaqiang Sun Qi Xie Chuanyou Li 《Cell Research》 SCIE CAS CSCD 2008年第7期756-767,共12页
Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic eviden... Jasmonic acid (JA) is an important phytohormone that regulates plant defense responses against herbivore attack, pathogen infection and mechanical wounding. In this report, we provided biochemical and genetic evidence to show that the Arabidopsis thaliana NAC family proteins ANAC019 and ANAC055 might function as transcription activators to regulate JA-induced expression of defense genes. The role of the two NAC genes in JA signaling was examined with the anacO19 anac055 double mutant and with transgenic plants overexpressing ANACO19 or ANAC055. The anacO19 anac055 double mutant plants showed attenuated JA-induced VEGETATIVE STORAGE PROTEIN1 (VSP1) and LIPOXYGENASE2 (LOX2) expression, whereas transgenic plants overexpressing the two NAC genes showed enhanced JA-induced VSP1 and LOX2 expression. That the JA-induced expression of the two NAC genes depends on the function of COIl and AtMYC2, together with the finding that overexpression of ANACO19 partially rescued the JA-related phenotype of the atmyc2-2 mutant, has led us to a hypothesis that the two NAC proteins act downstream of AtMYC2 to regulate JA-signaled defense responses. Further evidence to substantiate this idea comes from the observation that the response of the anacO19 anac055 double mutant to a necrotrophic fungus showed high similarity to that of the atmyc2-2 mutant. 展开更多
关键词 Arabidopsis thaliana ANAC019 and ANAC055 transcription factor jasmonic acid signaling defense response pathogen infection
下载PDF
小麦禾谷胞囊线虫(Heterodera avenae)的核糖体基因(rDNA)限制性片段长度多态性研究 被引量:46
13
作者 彭德良 S.Subbotin M.Moens 《植物病理学报》 CAS CSCD 北大核心 2003年第4期323-329,共7页
采用PCR技术扩增出中国和摩洛哥禾谷胞囊线虫群体的核糖体基因 (rDNA)的内转录间隔区 (ITS)片段的长度约为 10 6 0bp。用 11种限制性内切酶 (RE)酶切禾谷胞囊线虫ITS扩增产物 ,共产生 2 7个酶切片段。用AluI和RsaI酶切ITS扩增产物证明... 采用PCR技术扩增出中国和摩洛哥禾谷胞囊线虫群体的核糖体基因 (rDNA)的内转录间隔区 (ITS)片段的长度约为 10 6 0bp。用 11种限制性内切酶 (RE)酶切禾谷胞囊线虫ITS扩增产物 ,共产生 2 7个酶切片段。用AluI和RsaI酶切ITS扩增产物证明中国禾谷胞囊线虫ITS属于“B型” ,而摩洛哥禾谷胞囊线虫ITS属于“A型”。用HinfI酶切后 ,7个中国禾谷胞囊线虫群体产生 2个RFLP片段 (86 0和 2 0 0bp) ,而摩洛哥群体产生 3个RFLP片段 (5 2 0、340和 2 0 0bp) ,HinfI揭示出中国与摩洛哥禾谷胞囊线虫ITS之间存在差异。AvaI和HindIII不能酶切禾谷胞囊线虫ITS。用CfoI、Bsh12 36I、MsrFI、ScrFI、HaeIII和MvaI 6种RE酶切中国和摩洛哥禾谷胞囊线虫群体的rDNA ITS ,均分别得到相同类型的RFLP分布型 ,因此这 6种RE不能揭示中国与摩洛哥群体的rDNA ITS的差异。 展开更多
关键词 小麦 禾谷胞囊线虫 Heterodera-avenae 核糖体基因 RDNA 限制性 片段长度 多态性
下载PDF
Crop Breeding Chips and Genotyping Platforms: Progress, Challenges, and Perspectives 被引量:54
14
作者 Awais Rasheed Yuanfeng Hao +4 位作者 Xianchun Xia Awais Khan Yunbi Xu Rajeev K. Varshney Zh-onghu He 《Molecular Plant》 SCIE CAS CSCD 2017年第8期1047-1064,共18页
There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of geno... There is a rapidly rising trend in the development and application of molecular marker assays for gene map- ping and discovery in field crops and trees. Thus far, more than 50 SNP arrays and 15 different types of genotyping-by-sequencing (GBS) platforms have been developed in over 25 crop species and perennial trees. However, much less effort has been made on developing ultra-high-throughput and cost-effective genotyping platforms for applied breeding programs. In this review, we discuss the scientific bottlenecks in existing SNP arrays and GBS technologies and the strategies to develop targeted platforms for crop mo- lecular breeding. We propose that future practical breeding platforms should adopt automated genotyping technologies, either array or sequencing based, target functional polymorphisms underpinning economic traits, and provide desirable prediction accuracy for quantitative traits, with universal applications under wide genetic backgrounds in crops. The development of such platforms faces serious challenges at both the technological level due to cost ineffectiveness, and the knowledge level due to large genotype- phenotype gaps in crop plants. It is expected that such genotyping platforms will be achieved in the next ten years in major crops in consideration of (a) rapid development in gene discovery of important traits, (b) deepened understanding of quantitative traits through new analytical models and population designs, (c) integration of multi-layer -omics data leading to identification of genes and pathways responsible for important breeding traits, and (d) improvement in cost effectiveness of large-scale genotyping. Crop breeding chips and genotyping platforms will provide unprecedented opportunities to accelerate the development of cultivars with desired yield potential, quality, and enhanced adaptation to mitigate the effects of climate change. 展开更多
关键词 Single nucleotide polymorphisms (SNPs) Genotyping-by-sequencing (GBS) SNP arrays Crop breeding Genotyping platforms
原文传递
Natural Variation in OsPRR37 Regulates Heading Date and Contributes to Rice Cultivation at a Wide Range of Latitudes 被引量:50
15
作者 Bon-Hyuk Koo Soo-Cheul Yoo +7 位作者 Joon-Woo Park Choon-Tak Kwon Byoung-Doo Lee Gynheung An Zhanying Zhang linjie Li Zichao Li Nam-Chon Paek 《Molecular Plant》 SCIE CAS CSCD 2013年第6期1877-1888,共12页
Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using ... Heading date and photoperiod sensitivity are fundamental traits that determine rice adaptation to a wide range of geographic environments. By quantitative trait locus (QTL) mapping and candidate gene analysis using whole- genome re-sequencing, we found that Oryza sativa Pseudo-Response Regulator37 (OsPRR37; hereafter PRR37) is respon- sible for the Early heading7-2 (EH7-2)/Heading date2 (Hd2) QTL which was identified from a cross of late-heading rice 'Milyang23 (M23)' and early-heading rice 'H143'. H143 contains a missense mutation of an invariantly conserved amino acid in the CCT (CONSTANS, CO-like, and TOC1) domain of PRR37 protein. In the world rice collection, different types of nonfunctional PRR37 alleles were found in many European and Asian rice cultivars. Notably, the japonica varieties harboring nonfunctional alleles of both Ghd7/Hd4 and PRR37/Hd2 flower extremely early under natural long-day condi- tions, and are adapted to the northernmost regions of rice cultivation, up to 53~ N latitude. Genetic analysis revealed that the effects of PRR37 and Ghd7 alleles on heading date are additive, and PRR37 down-regulates Hd3a expression to suppress flowering under long-day conditions. Our results demonstrate that natural variations in PRR37/Hd2 and GhdT/ Hd4 have contributed to the expansion of rice cultivation to temperate and cooler regions. 展开更多
关键词 RICE heading date quantitative trait locus natural variation Ghd7 OsPRR37.
原文传递
Maize-soybean strip intercropping: Achieved a balance between high productivity and sustainability 被引量:51
16
作者 DU Jun-bo HAN Tian-fu +8 位作者 GAI Jun-yi YONG Tai-wen SUN Xin WANG Xiao-chun YANG Feng LIU Jiang SHU Kai LIU Wei-guo YANG Wen-yu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2018年第4期747-754,共8页
Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogic... Intercropping is one of the most vital practice to improve land utilization rate in China that has limited arable land resource. However, the traditional intercropping systems have many disadvantages including illogical field lay-out of crops, low economic value, and labor deficiency, which cannot balance the crop production and agricultural sustainability. In view of this, we developed a novel soybean strip intercropping model using maize as the partner, the regular maize-soybean strip intercropping mainly popularized in northern China and maize-soybean relay-strip intercropping principally extended in southwestern China. Compared to the traditional maize-soybean intercropping systems, the main innovation of field lay-out style in our present intercropping systems is that the distance of two adjacent maize rows are shrunk as a narrow strip, and a strip called wide strip between two adjacent narrow strips is expanded reserving for the growth of two or three rows of soybean plants. The distance between outer rows of maize and soybean strips are expanded enough for light use efficiency improvement and tractors working in the soybean strips. Importantly, optimal cultivar screening and increase of plant density achieved a high yield of both the two crops in the intercropping systems and increased land equivalent ratio as high as 2.2. Annually alternative rotation of the adjacent maize-and soybean-strips increased the grain yield of next seasonal maize, improved the absorption of nitrogen, phosphorus, and potasium of maize, while prevented the continuous cropping obstacles. Extra soybean production was obtained without affecting maize yield in our strip intercropping systems, which balanced the high crop production and agricultural sustainability. 展开更多
关键词 MAIZE SOYBEAN strip intercropping high production agricultural sustainability
下载PDF
Base-Editing-Mediated Artificial Evolution of OsALS1 In Planta to Develop Novel Herbicide-Tolerant Rice Germplasms 被引量:50
17
作者 Yongjie Kuang Shaofang Li +5 位作者 Bin Ren Fang Yan Carl Spetz Xiangju Li Xueping Zhou Huanbin Zhou 《Molecular Plant》 SCIE CAS CSCD 2020年第4期565-572,共8页
Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms con... Recently developed CRISPR-mediated base editors,which enable the generation of num erous nucleotide changes in target genomic regions,have been widely adopted for gene correction and generation of crop germ plasms containing im portant gain-of-function genetic variations.How ever,to engineer target genes with unknown functional SNPs remains challenging.To address this issue,we present here abase-e diting-mediated gene evolution(BEMGE)m ethod,employing both Cas9n-based cytosine and adenine base editors as well as a single-guide RNA(sgRNA)library tiling the full-length coding region,for developing novel rice germ plasm swith mutations in any endogenous gene.To this end,OsALS1 was artificially evolved in rice cells using BEMGE through both Agrobacterium-mediated and particle-bom bardment-mediated transform ation.Four different types of amino acid substitutions in the evolved OsALS1,derived from two sites that have never been targeted by natural or human selection during rice dom estication,were identified,conferring varying levels of tolerance to the herbicide bispyribac-sodium.Furtherm ore,the P171F substitution identified in a strong OsALS1 allele was quickly introduced into the commercial rice cultivar Nangeng 46 through precise base editing w ith the corresponding base editor and sgRNA.Collectively,these data indicate great potential of BEMGE in creating important genetic variants of target genes for crop improvement. 展开更多
关键词 CRISPR base editor gene evolution OsALS1 herbicide resistance Otyza sativa L
原文传递
Research progress on reduced lodging of high-yield and-density maize 被引量:48
18
作者 XUE Jun XIE Rui-zhi +5 位作者 ZHANG Wang-feng WANG Ke-ru HOU Peng MING Bo GOU Ling LI Shao-kun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第12期2717-2725,共9页
Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor r... Increasing plant density is an effective way to enhance maize yield, but often increases lodging rate and severity, significantly elevating the risk and cost of maize production. Therefore, lodging is a major factor restricting future increases in maize yield through high-density planting. This paper reviewed previous research on the relationships between maize lodging rate and plant morphology, mechanical strength of stalks, anatomical and biochemical characteristics of stalks, root characteristics, damage from pests and diseases, environmental factors, and genomic characteristics. The effects of planting density on these factors and explored possible ways to improve lodging resistance were also analyzed in this paper. The results provide a basis for future research on increasing maize lodging resistance under high-density planting conditions and can be used to develop maize cultivation practices and lodging-resistant maize cultivars. 展开更多
关键词 MAIZE lodging resistance stalk strength high yield high plant density
下载PDF
A Kelch Motif-Containing Serine/Threonine Protein Phosphatase Determines the Large Grain QTL Trait in Rice 被引量:47
19
作者 Zejun Hu Haohua He +6 位作者 Shiyong Zhang Fan Sun Xiaoyun Xin Wenxiang Wang Xi Qian Jingshui Yang Xiaojin Luo 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2012年第12期979-990,共12页
A thorough understanding of the genetic basis of rice grain traits is critical for the improvement of rice (Oryza sativa L.) varieties. In this study, we generated an F2 population by crossing the large-grain japoni... A thorough understanding of the genetic basis of rice grain traits is critical for the improvement of rice (Oryza sativa L.) varieties. In this study, we generated an F2 population by crossing the large-grain japonica cultivar CW23 with Peiai 64 (PA64), an elite indica small-grain cultivar. Using QTL analysis, 17 QTLs for five grain traits were detected on four different chromosomes. Eight of the QTLs were newly-identified in this study. In particular, qGL3-1, a newly-identified grain length QTL with the highest LOD value and largest phenotypic variation, was fine-mapped to the 17 kb region of chromosome 3. A serine/threonine protein phosphatase gene encoding a repeat domain containing two Kelch motifs was identified as the unique candidate gene corresponding to this QTL. A comparison of PA64 and CW23 sequences revealed a single nucleotide substitution (C→A) at position 1092 in exon 10, resulting in replacement of Asp (D) in PA64 with Glu (E) in CW23 for the 364th amino acid. This variation is located at the D position of the conserved sequence motif AVLDT of the Kelch repeat. Genetic analysis of a near-isogenic line (NIL) for qGL3-1 revealed that the allele qGL3-1 from CW23 has an additive or partly dominant effect, and is suitable for use in molecular marker-assisted selection. 展开更多
关键词 Grain shape QTL mapping QTL fine mapping RICE serine/threonine protein phosphatase.
原文传递
Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize 被引量:45
20
作者 Hongguang Cai Wei Ma +6 位作者 Xiuzhi Zhang Jieqing Ping Xiaogong Yan Jianzhao Liu Jingchao Yuan Lichun Wang Jun Ren 《The Crop Journal》 SCIE CAS 2014年第5期297-307,共11页
A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated ... A four-year field experiment was conducted to investigate the effect of subsoiling depth on root morphology, nitrogen(N), phosphorus(P), and potassium(K) uptake, and grain yield of spring maize. The results indicated that subsoil tillage promoted root development,increased nutrient accumulation, and increased yield. Compared with conventional soil management(CK), root length, root surface area, and root dry weight at 0–80 cm soil depth under subsoil tillage to 30 cm(T1) and subsoil tillage to 50 cm(T2) were significantly increased, especially the proportions of roots in deeper soil. Root length, surface area, and dry weight differed significantly among three treatments in the order of T2 > T1 > CK at the12-leaf and early filling stages. The range of variation of root diameter in different soil layers in T2 treatment was the smallest, suggesting that roots were more likely to grow downwards with deeper subsoil tillage in soil. The accumulation of N, P, and K in subsoil tillage treatment was significantly increased, but the proportions of kernel and straw were different. In a comparison of T1 with T2, the grain accumulated more N and P, while K accumulation in kernel and straw varied in different years. Grain yield and biomass were increased by 12.8% and 14.6% on average in subsoil tillage treatments compared to conventional soil treatment. Although no significant differences between different subsoil tillage depths were observed for nutrient accumulation and grain yield, lodging resistance of plants was significantly improved in subsoil tillage to 50 cm, a characteristic that favors a high and stable yield under extreme environments. 展开更多
关键词 Spring MAIZE SUBSOIL TILLAGE Root morphology Grain yield NUTRIENT ACCUMULATION
下载PDF
上一页 1 2 113 下一页 到第
使用帮助 返回顶部