Transcranial Hall-effect stimulation(THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuron...Transcranial Hall-effect stimulation(THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field(due to Lorentz force).In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then,based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders.展开更多
接纳承诺疗法(Acceptance and Commitment Therapy,ACT)被认为是行为治疗“第三浪潮”的重要代表。本研究使用元分析结构方程模型,考察ACT的作用机制。通过数据库检索与筛选,最终纳入文献50篇。结果发现:ACT所假设的心理灵活性、接纳、...接纳承诺疗法(Acceptance and Commitment Therapy,ACT)被认为是行为治疗“第三浪潮”的重要代表。本研究使用元分析结构方程模型,考察ACT的作用机制。通过数据库检索与筛选,最终纳入文献50篇。结果发现:ACT所假设的心理灵活性、接纳、此时此刻、价值的中介作用都达到统计显著,认知解离这一中介变量并不显著;中介机制在网络化干预中仍然得到检验;相较之传统CBT,ACT在所假设的机制上有其区别于CBT的优势。后续临床研究应更全面地测量6大核心机制,关注对美好生活提升的影响,采用多点瞬时评价法,并尽可能使用更高级、更先进的统计方法检验其作用机制。展开更多
Current neuromodulation techniques such as optogenetics and deep-brain stimulation are transforming basic and translational neuroscience. These two neuro- modulation approaches are, however, invasive since surgical im...Current neuromodulation techniques such as optogenetics and deep-brain stimulation are transforming basic and translational neuroscience. These two neuro- modulation approaches are, however, invasive since surgical implantation of an optical fiber or wire electrode is required. Here, we have invented a non-invasive magnetogenetics that combines the genetic targeting of a mag- netoreceptor with remote magnetic stimulation. The noninvasive activation of neurons was achieved by neuronal expression of an exogenous magnetoreceptor, an iron-sulfur cluster assembly protein 1 (Iscal). In HEK-293 cells and cultured hippocampal neurons expressing this magnetoreceptor, application of an external magnetic field resulted in membrane depolarization and calcium influx in a reproducible and reversible manner, as indicated by the ultrasensitive fluorescent calcium indicator GCaMP6s.Moreover, the magnetogenetic control of neuronal activity might be dependent on the direction of the magnetic field and exhibits on-response and off-response patterns for the external magnetic field applied. The activation of this magnetoreceptor can depolarize neurons and elicit trains of action potentials, which can be triggered repetitively with a remote magnetic field in whole-cell patch-clamp recording. In transgenic Caenorhabditis elegans expressing this magnetoreceptor in myo-3-specific muscle cells or mec-4- specific neurons, application of the external magnetic field triggered muscle contraction and withdrawal behavior of the worms, indicative of magnet-dependent activation of muscle cells and touch receptor neurons, respectively. The advantages of magnetogenetics over optogenetics are its exclusive non-invasive, deep penetration, long-term continuous dosing, unlimited accessibility, spatial uniformity and relative safety. Like optogenetics that has gone through decade-long improvements, magnetogenetics, with continuous modification and maturation, will reshape the current landscape of neuromodulation toolboxes and will have a broad range 展开更多
We characterized a unique group of patients with neuromyelitis optica spectrum disorder (NMOSD) who carded autoantibod- ies of aquaporin-4 (AQP4) and myelin-oligodendrocyte glycoprotein (MOG). Among the 125 NMOS...We characterized a unique group of patients with neuromyelitis optica spectrum disorder (NMOSD) who carded autoantibod- ies of aquaporin-4 (AQP4) and myelin-oligodendrocyte glycoprotein (MOG). Among the 125 NMOSD patients, 10 (8.0%) were AQP4- and MOG-ab double positive, and 14 (11.2%) were MOG-ab single positive. The double-positive patients had a multiphase disease course with a high annual relapse rate (P=0.0431), and severe residual disability (P〈0.0001). Of the dou- ble-positive patients, 70% had MS-like brain lesions, more severe edematous, multifocal regions on spinal magnetic resonance imaging (MRI), pronounced decreases of retinal nerve fiber layer thickness and atrophy of optic nerves. In contrast, patients with only MOG-ab had a higher ratio of monophasic disease course and mild residual disability. Spinal cord MRI illustrated multifocal cord lesions with mild edema, and brain MRIs showed more lesions around lateral ventricles. NMOSD patients carrying both autoantibodies to AQP4 and MOG existed and exhibited combined features of prototypic NMO and relaps- ing-remitting form of MS, whereas NMOSD with antibodies to MOG only exhibited an "intermediate" phenotype between NMOSD and MS. Our study suggests that antibodies against MOG might be pathogenic in NMOSD patients and that determi- nation of anti-MOG antibodies maybe instructive for management of NMOSD patients.展开更多
Alzheimer's disease (AD) is the most common type of dementia, comprising an estimated 60-80% of all dementia cases. It is clinically characterized by impairments of memory and other cognitive functions. Previous st...Alzheimer's disease (AD) is the most common type of dementia, comprising an estimated 60-80% of all dementia cases. It is clinically characterized by impairments of memory and other cognitive functions. Previous studies have demonstrated that these impairments are associated with abnormal structural and functional connections among brain regions, leading to a disconnection concept of AD. With the advent of a combination of non-invasive neuroimaging (structural magnetic resonance imaging (MRI), diffusion MRI, and functional MRI) and neurophysiological techniques (electroencephalography and magnetoencephaJography) with graph theoretical analysis, recent studies have shown that patients with AD and mild cognitive impairment (MCI), the prodromal stage of AD, exhibit disrupted topological organization in large-scale brain networks (i.e., connectomics) and that this disruption is significantly correlated with the decline of cognitive functions. In this review, we summarize the recent progress of brain connectomics in AD and MCI, focusing on the changes in the topological organization of large-scale structural and functional brain networks using graph theoretical approaches. Based on the two different perspectives of information segregation and integration, the literature reviewed here suggests that AD and MCI are associated with disrupted segregation and integration in brain networks. Thus, these connectomics studies open up a new window for understanding the pathophysiological mechanisms of AD and demonstrate the potential to uncover imaging biomarkers for clinical diagnosis and treatment evaluation for this disease.展开更多
Gene editing in model organisms has provided critical insights into brain development and diseases. Here, we report the generation of a cynomolgus monkey (Macaca fascicularis) carrying MECP2 mutations using transcri...Gene editing in model organisms has provided critical insights into brain development and diseases. Here, we report the generation of a cynomolgus monkey (Macaca fascicularis) carrying MECP2 mutations using transcription activator-like effector nucleases (TALENs)-mediated gene targeting. After injecting TALENs mRNA into monkey zygotes achieved by in vitro fertilization and embryo transplantation into surrogate monkeys, we obtained one male newborn monkey with an MECP2 deletion caused by frame- shifting mutation in various tissues. The monkey carrying the MECP2 mutation failed to survive after birth, due to either the toxicity of TALENs or the critical requirement of MECP2 for neural development. The level of MeCP2 protein was essentially depleted in the monkey's brain. This study demonstrates the feasibility of introducing genetic mutations in non-human primates by site-specific gene-editing methods.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273063 and 61503321)the China Postdoctoral Science Foundation(Grant No.2013M540215)+1 种基金the Natural Science Foundation of Hebei Province,China(Grant No.F2014203161)the Youth Research Program of Yanshan University,China(Grant No.02000134)
文摘Transcranial Hall-effect stimulation(THS) is a new stimulation method in which an ultrasonic wave in a static magnetic field generates an electric field in an area of interest such as in the brain to modulate neuronal activities. However, the biophysical basis of simulating the neurons remains unknown. To address this problem, we perform a theoretical analysis based on a passive cable model to investigate the THS mechanism of neurons. Nerve tissues are conductive; an ultrasonic wave can move ions embedded in the tissue in a static magnetic field to generate an electric field(due to Lorentz force).In this study, a simulation model for an ultrasonically induced electric field in a static magnetic field is derived. Then,based on the passive cable model, the analytical solution for the voltage distribution in a nerve tissue is determined. The simulation results showthat THS can generate a voltage to stimulate neurons. Because the THS method possesses a higher spatial resolution and a deeper penetration depth, it shows promise as a tool for treating or rehabilitating neuropsychiatric disorders.
文摘接纳承诺疗法(Acceptance and Commitment Therapy,ACT)被认为是行为治疗“第三浪潮”的重要代表。本研究使用元分析结构方程模型,考察ACT的作用机制。通过数据库检索与筛选,最终纳入文献50篇。结果发现:ACT所假设的心理灵活性、接纳、此时此刻、价值的中介作用都达到统计显著,认知解离这一中介变量并不显著;中介机制在网络化干预中仍然得到检验;相较之传统CBT,ACT在所假设的机制上有其区别于CBT的优势。后续临床研究应更全面地测量6大核心机制,关注对美好生活提升的影响,采用多点瞬时评价法,并尽可能使用更高级、更先进的统计方法检验其作用机制。
基金supported by Tsinghua-Peking Center for Life SciencesIDG/Mc Govern Foundationthe National Natural Science Foundation of China
文摘Current neuromodulation techniques such as optogenetics and deep-brain stimulation are transforming basic and translational neuroscience. These two neuro- modulation approaches are, however, invasive since surgical implantation of an optical fiber or wire electrode is required. Here, we have invented a non-invasive magnetogenetics that combines the genetic targeting of a mag- netoreceptor with remote magnetic stimulation. The noninvasive activation of neurons was achieved by neuronal expression of an exogenous magnetoreceptor, an iron-sulfur cluster assembly protein 1 (Iscal). In HEK-293 cells and cultured hippocampal neurons expressing this magnetoreceptor, application of an external magnetic field resulted in membrane depolarization and calcium influx in a reproducible and reversible manner, as indicated by the ultrasensitive fluorescent calcium indicator GCaMP6s.Moreover, the magnetogenetic control of neuronal activity might be dependent on the direction of the magnetic field and exhibits on-response and off-response patterns for the external magnetic field applied. The activation of this magnetoreceptor can depolarize neurons and elicit trains of action potentials, which can be triggered repetitively with a remote magnetic field in whole-cell patch-clamp recording. In transgenic Caenorhabditis elegans expressing this magnetoreceptor in myo-3-specific muscle cells or mec-4- specific neurons, application of the external magnetic field triggered muscle contraction and withdrawal behavior of the worms, indicative of magnet-dependent activation of muscle cells and touch receptor neurons, respectively. The advantages of magnetogenetics over optogenetics are its exclusive non-invasive, deep penetration, long-term continuous dosing, unlimited accessibility, spatial uniformity and relative safety. Like optogenetics that has gone through decade-long improvements, magnetogenetics, with continuous modification and maturation, will reshape the current landscape of neuromodulation toolboxes and will have a broad range
基金supported by National Basic Research Program of China Grant (2013CB96690)the Natural Science Foundation of China Grants (81100888, 81230028, 81371372)+2 种基金the National Key Clinical Specialty Construction Program of ChinaUS National Institute of Health (R01AI083294)the American Heart Association (14GRNT18970031)
文摘We characterized a unique group of patients with neuromyelitis optica spectrum disorder (NMOSD) who carded autoantibod- ies of aquaporin-4 (AQP4) and myelin-oligodendrocyte glycoprotein (MOG). Among the 125 NMOSD patients, 10 (8.0%) were AQP4- and MOG-ab double positive, and 14 (11.2%) were MOG-ab single positive. The double-positive patients had a multiphase disease course with a high annual relapse rate (P=0.0431), and severe residual disability (P〈0.0001). Of the dou- ble-positive patients, 70% had MS-like brain lesions, more severe edematous, multifocal regions on spinal magnetic resonance imaging (MRI), pronounced decreases of retinal nerve fiber layer thickness and atrophy of optic nerves. In contrast, patients with only MOG-ab had a higher ratio of monophasic disease course and mild residual disability. Spinal cord MRI illustrated multifocal cord lesions with mild edema, and brain MRIs showed more lesions around lateral ventricles. NMOSD patients carrying both autoantibodies to AQP4 and MOG existed and exhibited combined features of prototypic NMO and relaps- ing-remitting form of MS, whereas NMOSD with antibodies to MOG only exhibited an "intermediate" phenotype between NMOSD and MS. Our study suggests that antibodies against MOG might be pathogenic in NMOSD patients and that determi- nation of anti-MOG antibodies maybe instructive for management of NMOSD patients.
基金supported by National Key Basic Research Program of China(2014CB846102)Natural Science Foundation of China(81030028 and 31221003)+1 种基金Beijing Natural Science Foundation(Z111107067311036)National Science Fund for Distinguished Young Scholars(81225012)
文摘Alzheimer's disease (AD) is the most common type of dementia, comprising an estimated 60-80% of all dementia cases. It is clinically characterized by impairments of memory and other cognitive functions. Previous studies have demonstrated that these impairments are associated with abnormal structural and functional connections among brain regions, leading to a disconnection concept of AD. With the advent of a combination of non-invasive neuroimaging (structural magnetic resonance imaging (MRI), diffusion MRI, and functional MRI) and neurophysiological techniques (electroencephalography and magnetoencephaJography) with graph theoretical analysis, recent studies have shown that patients with AD and mild cognitive impairment (MCI), the prodromal stage of AD, exhibit disrupted topological organization in large-scale brain networks (i.e., connectomics) and that this disruption is significantly correlated with the decline of cognitive functions. In this review, we summarize the recent progress of brain connectomics in AD and MCI, focusing on the changes in the topological organization of large-scale structural and functional brain networks using graph theoretical approaches. Based on the two different perspectives of information segregation and integration, the literature reviewed here suggests that AD and MCI are associated with disrupted segregation and integration in brain networks. Thus, these connectomics studies open up a new window for understanding the pathophysiological mechanisms of AD and demonstrate the potential to uncover imaging biomarkers for clinical diagnosis and treatment evaluation for this disease.
基金supported by the National Basic Research Development Program of China (2011CBA00400 and 2011CB809102)the CAS Strategic Priority Research Program of China (XDB02050400)+2 种基金the National Key Technology R&D Program of China (2014BAI03B00)the CAS Hundreds of Talents Program of China (to Z.Q. and Q.S.)the National Science Foundation of China (91232712)
文摘Gene editing in model organisms has provided critical insights into brain development and diseases. Here, we report the generation of a cynomolgus monkey (Macaca fascicularis) carrying MECP2 mutations using transcription activator-like effector nucleases (TALENs)-mediated gene targeting. After injecting TALENs mRNA into monkey zygotes achieved by in vitro fertilization and embryo transplantation into surrogate monkeys, we obtained one male newborn monkey with an MECP2 deletion caused by frame- shifting mutation in various tissues. The monkey carrying the MECP2 mutation failed to survive after birth, due to either the toxicity of TALENs or the critical requirement of MECP2 for neural development. The level of MeCP2 protein was essentially depleted in the monkey's brain. This study demonstrates the feasibility of introducing genetic mutations in non-human primates by site-specific gene-editing methods.