Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low effi...Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low efficiency of homologous recombination and poor availability of exogenous donor DNA as repair templates strongly impede the use of HDR for precise genome editing in many species (Komor et al., 2017a). To complement the HDR method and circumvent some of its limitations.展开更多
The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was ...The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was tested by 2,2-diphenyl-l-picrylhydra- zyl radicals (DPPH) method and 2,2'-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) method. The total phenolic and flavonoid contents, and their antioxidant capacity varied in different citrus fruit tissues. Generally, the peel had both the highest average of total phenolics (27.18 mg gallic acid equivalent (GAE) g^-1 DW) and total flavonoids (38.97 mg rutin equivalent (RE) g^-1 DW). The highest antioxidant capacity was also the average of DPPH value (21.92 mg vitamin C equiv- alent antioxidant capacity (VCEAC) g^-1 DW) and average of ABTS value (78.70 mg VCEAC g-1 DW) in peel. The correlation coefficient between the total phenolics and their antioxidant capacity of different citrus fruits tissues ranged from 0.079 to 0.792, and from -0.150 to 0.664 for the total flavonoids. The antioxidant capacity of fruit tissues were correlated with the total phenoilc content and flavonoid content except in case of the peel. In addition, the total phenolic content and antioxidant capacity varied in different citrus genotypes. Manju and Karamandarin were better genotypes with higher antioxidation and the phenolic content, however Shagan was the poorest genotype with lower antioxidation and the phenolic content.展开更多
CRISPR/Cas9 genome editing relies on sgRNA-target DNA base pairing and a short downstream PAM sequence to recognize target DNA. The strict protospacer adjacent motif (PAM) requirement hinders applications of the CRISP...CRISPR/Cas9 genome editing relies on sgRNA-target DNA base pairing and a short downstream PAM sequence to recognize target DNA. The strict protospacer adjacent motif (PAM) requirement hinders applications of the CRISPR/Cas9 system since it restricts the targetable sites in the genomes. xCas9 and SpCas9-NG are two recently engineered SpCas9 variants that can recognize more relaxed NG PAMs, implying a great potential in addressing the issue of PAM constraint. Here we use stable transgenic lines to evaluate the efficacies of xCas9 and SpCas9-NG in performing gene editing and base editing in rice. We found that xCas9 can efficiently induce mutations at target sites with NG and GAT PAM sequences in rice. However, base editors containing xCas9 failed to edit most of the tested target sites. SpCas9-NG exhibited a robust editing activity at sites with various NG PAMs without showing any preference for the third nucleotide after NG. Moreover, we showed that xCas9 and SpCas9-NG have higher specificity than SpCas9 at the CGG PAM site. We further demonstrated that different forms of cytosine or adenine base editors containing SpCas9-NG worked efficiently in rice with broadened PAM compatibility. Taken together, our work has yielded versatile genome-engineering tools that will significantly expand the target scope in rice and other crops.展开更多
The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe res...The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe resource for the manufacture of antimicrobial feed additive for livestock. The active constituents from M. cordata are known to include benzylisoquinoline alkaloids (BIAs) such as sanguinarine (SAN) and chelerythrine (CHE), but their metabolic pathways have yet to be studied in this non-model plant. The active biosynthesis of SAN and CHE in M. cordata was first examined and confirmed by feeding ^13C-labeled tyrosine. To gain further insights, we de novo sequenced the whole genome of M. cordata, the first to be sequenced from the Papaveraceae family. The M. cordata genome covering 378 Mb encodes 22,328 predicted protein-coding genes with 43.5% being transposable elements. As a member of basal eudicot, M. cordata genome lacks the paleohexaploidy event that occurred in almost all eudicots. From the genomics data, a complete set of 16 metabolic genes for SAN and CHE biosynthesis was retrieved, and 14 of their biochemical activities were validated. These genomics and metabolic data show the conserved BIA metabolic pathways in M. cordata and provide the knowledge foundation for future productions of SAN and CHE by crop improvement or microbial pathway reconstruction.展开更多
A recent paper by Kidokoro et al.(2020)in The Plant Cell reported a transgene-dependent transcriptional silencing phenomenon in the dominant ice1-1 Arabidopsis mutant containing the CBF3-LUC reporter,and questioned wh...A recent paper by Kidokoro et al.(2020)in The Plant Cell reported a transgene-dependent transcriptional silencing phenomenon in the dominant ice1-1 Arabidopsis mutant containing the CBF3-LUC reporter,and questioned whether ICE1 may regulate CBF genes and may be involved in plant cold response.Here,we evaluate available evidence supporting the involvement of ICE1 in plant cold response,and provide ChIP-seq data showing ICE1 binding to the promoters of CBF genes and other regulatory genes known to be critical for cold response as well as to the promoters of some COR genes.展开更多
Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and s...Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and swelling of root tips. Mutant phenotypes were exacerbated by sucrose, but not by equiosmolar concentrations of mannitol, and attenuated by low inorganic phosphate in the medium. Protein PHT4;6 belongs to the Major Facilitator Superfamily of permeases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters, and is a member of the PHT4 family of putative intracellular phosphate transporters of plants. PHT4;6 localizes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions. Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis, which are essential for salt tolerance. Together, our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.展开更多
Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination ...Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors,the phytohormone abscisic acid(ABA)prevents premature germination and seedling growth under unfavorable conditions.However,little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted.Here,we report that ABA Signaling Terminator(ABT),a WD40 protein,efficiently switches off ABA signaling and is critical for seed germination and seedling establishment.ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner.Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA,whereas knockout of ABT has the opposite effect.We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins,interferes with the interaction between PYR1/PYL4 and ABI1/ABI2,and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4,thereby terminating ABA signaling.Taken together,our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis.展开更多
The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mec...The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps 10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi defi- ciency, hpslO is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electro- genic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi defi- ciency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.展开更多
The harvesting time of fresh tea leaves has a significant impact on product yield and quality.The aim of this study was to propose a method for real-time monitoring of the optimum harvesting time for picking fresh tea...The harvesting time of fresh tea leaves has a significant impact on product yield and quality.The aim of this study was to propose a method for real-time monitoring of the optimum harvesting time for picking fresh tea leaves based on machine vision.Firstly,the shapes of fresh tea leaves were distinguished from RGB images of the tea-tree canopy after graying with the improved B-G algorithm,filtering with a median filter algorithm,binary processing with the Otsu algorithm,and noise reduction and edge smoothing using open and close operations.Then the leaf characteristics,such as leaf area index,average length,and leaf identification index,were calculated.Based on these,the Bayesian discriminant principle and method were used to construct a discriminant model for fresh tea-leaf collection status.When this method was applied to a RGB tea-tree canopy image acquired at 45°shooting angle,the fresh tea-leaf recognition rate was 90.3%,and the accuracy for fresh tea-leaf harvesting status was 98%by cross validation.Hence,this method provides the basic conditions for future tea-plantation operation and management using information technology,automation,and intelligent systems.展开更多
In order to recognize the key flavor compounds influencing the consumers' choice for honey peach, nectarine, and flat peach and provide important information for orientation breeding, sugars, organic acids, and ar...In order to recognize the key flavor compounds influencing the consumers' choice for honey peach, nectarine, and flat peach and provide important information for orientation breeding, sugars, organic acids, and aroma volatiles in 3 types of peaches were examined by high performance liquid chromatography(HPLC) and gas chromatography–mass spectrometry(GC–MS) and their key individual characteristic flavor compounds were identified by multivariate analysis integrated with consumers' evaluation. No significant differences in sugar and organic acid were observed between 3 types of peaches. In hierarchical clustering analysis(HCA) and principal component analysis(PCA)models, 3 types of peaches could not be differentiated by sugars or organic acids, but could be identified completely by aroma volatiles or by flavor compounds. A partial least squares regression(PLSR) model revealed that the key individual characteristic volatiles in nectarine, honey peach, and flat peach are C9 compounds and terpenic compounds, norisoprenoids and C6 compounds, and benzaldehyde, γ-decalactone, andδ-dodecalactone, respectively. These results suggest that sugars and organic acids form the background flavor of peach fruit and lactones shape the typical peach aroma. However, the individual aroma volatiles play the decisive role in unique flavor determination of different types of peaches.展开更多
Grapevine(Vitis vinifera),one of the most economically important fruit crops in the world,suffers significant yield losses from powdery mildew,a major fungal disease caused by Erysiphe necator.In addition to suppressi...Grapevine(Vitis vinifera),one of the most economically important fruit crops in the world,suffers significant yield losses from powdery mildew,a major fungal disease caused by Erysiphe necator.In addition to suppressing host immunity,phytopathogens modulate host proteins termed susceptibility(S)factors to promote their proliferation in plants.In this study,CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated 9)technology was used to enable the targeted mutagenesis of MLO(mildew resistance Locus O)family genes that are thought to serve as S factors for powdery mildew fungi.Small deletions or insertions were induced in one or both alleles of two grapevine MLO genes,VvMLO3 and VvMLO4,in the transgenic plantlets of the powdery mildew-susceptible cultivar Thompson Seedless.The editing efficiency achieved with different CRISPR/Cas9 constructs varied from 0 to 38.5%.Among the 20 VvMLO3/4-edited lines obtained,one was homozygous for a single mutation,three harbored biallelic mutations,seven were heterozygous for the mutations,and nine were chimeric,as indicated by the presence of more than two mutated alleles in each line.Six of the 20 VvMLO3/4-edited grapevine lines showed normal growth,while the remaining lines exhibited senescence-like chlorosis and necrosis.Importantly,four VvMLO3-edited lines showed enhanced resistance to powdery mildew,which was associated with host cell death,cell wall apposition(CWA)and H2O2 accumulation.Taken together,our results demonstrate that CRISPR/Cas9 genome-editing technology can be successfully used to induce targeted mutations in genes of interest to improve traits of economic importance,such as disease resistance in grapevines.展开更多
Apple Glomerella leaf spot(GLS) is a destructive fungal disease that damages apple leaves during the summer in China.Breeding new diseaseresistant varieties is considered to be the best way of controlling GLS.A geneti...Apple Glomerella leaf spot(GLS) is a destructive fungal disease that damages apple leaves during the summer in China.Breeding new diseaseresistant varieties is considered to be the best way of controlling GLS.A genetic study of resistance to Glomerella leaf spot(GLS) in apple was conducted by using four F_1 hybrid groups(‘Fuji' בGolden Delicious',‘Golden Delicious' בFuji',‘Gala' בFuji',and ‘Fuji' בQF-2') generated from two highly resistant varieties or selections,‘Fuji' and ‘QF-2',and two highly susceptible varieties,‘Golden Delicious' and ‘Gala'.The results showed that the separation ratios of resistant plants to the susceptible ones in the four F_1 hybrid groups were statistically consistent with the theoretical ratios of 1:1,1:1,0:1,and 1:0.Comprehensive analysis enabled us to generate the following conclusions:GLS resistance in apple may be controlled by a single recessive gene.The genotype of the resistant plants was rr,whereas the genotypes of the susceptible ones were RR and Rr.By using ‘Golden Delicious' בFuji' F_1 hybrid groups and the bulked segregation analysis(BSA) method,the marker S0506206-243 bp associated with disease resistance character to GLS was identified through screening 500 SSR primers encompassing the entire apple genome with even coverage,and the genetic distance between the marker and the GLS resistance gene was 9.8 cM.展开更多
Virus-induced gene silencing(VIGS)and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)systems are effective technologies for rapid and accurate gene function verification...Virus-induced gene silencing(VIGS)and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)systems are effective technologies for rapid and accurate gene function verification in modern plant biotechnology.However,the investigation of gene silencing and editing in radish remains limited.In this study,a bleaching phenotype was generated through the knockdown of RsPDS using tobacco rattle virus(TRV)-and turnip yellow mosaic virus(TYMV)-mediated gene silencing vectors.The TYMV-mediated gene silencing efficiency was higher than the TRV-based VIGS system in radish.The expression level of RsPDS was significantly inhibited using VIGS in'NAU-067'radish leaves.The rootless seedlings of‘NAU-067'were infected with Agrobacterium rhizogenes using the 2300GN-Ubi-RsPDS-Cas9 vector with two target sequences.Nine adventitious roots were blue with GUs staining,and four of these adventitious roots were edited at target sequence 1 of the RsPDS gene as indicated by Sanger sequencing.Furthermore,albino lines were generated with A.tumefaciens-mediated transformation of radish cotyledons.Five base substitutions and three base deletions occurred at target sequence 2 in Line 1,and three base insertions and three base substitutions occurred at target sequence 1 in Line 2.This study shows that VIGS and CRISPR/Cas9 techniques can be employed to precisely verify the biological functions of genes in radish,which will facilitate the genetic improvement of vital horticultural traits in radish breeding programs.展开更多
In order to optimize the ultrasonic extraction technique for the total flavonoid of leaf yellows plus, the contents of 21 leaf yellows plus total flavonoid from four regions in Heilongjiang Province were comparatively...In order to optimize the ultrasonic extraction technique for the total flavonoid of leaf yellows plus, the contents of 21 leaf yellows plus total flavonoid from four regions in Heilongjiang Province were comparatively analyzed. The ultrasonic extraction technology was optimized by Box-Behnken response surface method, and the total flavonoid content of 21 kinds of Acanthopanax senticosus(Rupr. et Maxim.) Harms from different producing areas were analyzed by cluster analysis. The optimal process conditions were determined as ultrasonic time 30 min, solid-liquid ratio 1 : 12 and ultrasonic power 250 W, and the average yield of the total flavonoid was 1.453 mg·g^ (-1). By optimizing the ultrasonic-assisted extraction method, the total flavonoid content from different producing areas was compared in the experiment, which provided certain data support for the optimization of the extraction process in the future and laid a certain theoretical foundation for the quality analysis of Chinese medicinal materials.展开更多
Horticulture is an important part of agricultural planting and production, which is of great significance for enriching human nutrition and beautifying and transforming the human living environment. At present, the ar...Horticulture is an important part of agricultural planting and production, which is of great significance for enriching human nutrition and beautifying and transforming the human living environment. At present, the area of horticultural crops in China is about 40 million ha, accounting for about onefourth of the national crop planting area, while the production of primary agricultural products is 1 billion tons, and the output value accounts for more than half of the total output value of the planting industry.展开更多
Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and...Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.However,studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.In the present study,a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.The gene structures and their promoter cis-elements,protein conserved motifs,subcellular localizations,physiological functions and biochemical properties were analyzed.A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication(WGD)and segmental duplication played vital roles in MdSPS gene family expansion.The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.Furthermore,three SPS gene subfamilies were classified based on phylogenetic relationships,and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.In addition,a major gene related to sucrose accumulation(MdSPSA2.3)was identified according to the highly consistent trends in the changes of its expression in four apple varieties(‘Golden Delicious’,‘Fuji’,‘Qinguan’and‘Honeycrisp’)and the correlation between gene expression and soluble sugar content during fruit development.Furthermore,the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.展开更多
Background:Hyperglycemia is a typical symptom of diabetes.High glucose induces apoptosis of isletβcells.While autophagy functions in cytoprotection and autophagic cell death.The interaction between autophagy and apop...Background:Hyperglycemia is a typical symptom of diabetes.High glucose induces apoptosis of isletβcells.While autophagy functions in cytoprotection and autophagic cell death.The interaction between autophagy and apoptosis is important in the modulation of the function of isletβcells.Vitamin B3 can induce autophagy and inhibit isletβapoptosis.Method:The mechanism of vitamin B3-mediated protective effect on the function of isletβcells was explored by the method of western blot,immunofluorescence and flow cytometry.Results:In the present study,high glucose stress increased the apoptosis rate,while vitamin B3 reduced the apoptosis rate.The effect of vitamin B3 on autophagy flux under normal and high glucose stress was also investigated.Vitamin B3 increased the number of autophagosomes and increased the light chain(LC)3-II/LC3-I ratio.In contrast,vitamin B3 decreased sequestosome 1(SQSTM1)/p62 protein expression and inhibited the phosphorylation of mammalian ribosomal protein S6 kinaseβ-1(p70S6K/S6K1),which was a substrate of mammalian target of rapamycin(mTOR)under normal and high glucose stress.To further verify the protective effect of vitamin B3 on apoptosis,we treated isletβcell RIN-m5F with autophagy inhibitor 3-methyladenine(3-MA).Vitamin B3 decreased the apoptosis rate under high glucose stress,while the inhibition of apoptosis by vitamin B3 was blocked after adding 3-MA.Conclusion:Our data suggested that vitamin B3 reduced the apoptosis rate ofβcells,possibly through inducing autophagy under high glucose stress.展开更多
Zinc finger-homeodomain proteins(ZF-HDs) are transcription factors that regulate plant growth,development,and abiotic stress tolerance.The SL-ZH13 gene was found to be significantly upregulated under drought stress tr...Zinc finger-homeodomain proteins(ZF-HDs) are transcription factors that regulate plant growth,development,and abiotic stress tolerance.The SL-ZH13 gene was found to be significantly upregulated under drought stress treatment in tomato(Solanum lycopersicum) leaves in our previous study.In this study,to further understand the role that the SL-ZH13 gene plays in the response of tomato plants to drought stress,the virus-induced gene silencing(VIGS) method was applied to downregulate SL-ZH13 expression in tomato plants,and these plants were treated with drought stress to analyze the changes in drought tolerance.The SL-ZH13 silencing efficiency was confirmed by quantitative real-time PCR(qRT-PCR) analysis.In SL-ZH13-silenced plants,the stems wilted faster,leaf shrinkage was more severe than in control plants under the same drought stress treatment conditions,and the mean stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants.Physiological analyses showed that the activity of superoxide dismutase(SOD) and peroxidase(POD) and the content of proline(Pro) in SL-ZH13-silenced plants were lower than those in control plants after 1.5 and 3 h of drought stress treatment.The malondialdehyde(MDA) content in SL-ZH13-silenced plants was higher than that in control plants after 1.5 and 3 h of drought stress treatment,and H2O2 and O2^-· accumulated much more in the leaves of SL-ZH13-silenced plants than in the leaves of control plants.These results suggested that silencing the SL-ZH13 gene affected the response of tomato plants to drought stress and decreased the drought tolerance of tomato plants.展开更多
The Gibberellic Acid-stimulated Arabidopsis(GASA)gene family is involved in the regulation of gene expression and plant growth,development,and stress responses.To investigate the function of loquat GASA genes in the g...The Gibberellic Acid-stimulated Arabidopsis(GASA)gene family is involved in the regulation of gene expression and plant growth,development,and stress responses.To investigate the function of loquat GASA genes in the growth and developmental regulation of plants,a loquat EjGASA6 gene homologous to Arabidopsis AtGASA6 was cloned.EjGASA6 expression was induced by gibberellin,and ectopic transgenic plants containing this gene exhibited earlier bloom and longer primary roots since these phenotypic characteristics are related to higher gibberellin content.Transcriptome analysis and qRT-PCR results showed that the expression levels of GA3ox1 and GA20ox1,which encode key enzymes in gibberellin biosynthesis,were significantly increased.Furthermore,we confirmed that EjGASA6 could promote the expression of GA20ox1 via the luciferase reporter system.Overall,our results suggest that EjGASA6 promotes blooming and main-root elongation by positively regulating gibberellin biosynthesis.These findings broaden our understanding of the role of GASAs in plant development and growth,and lay the groundwork for future research into the functions of EjGASA6 in regulating loquat growth and development.展开更多
For adaptation to ever-changing environments,plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glu...For adaptation to ever-changing environments,plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates(GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promoting hormone brassinosteroid(BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine(Cys) and glutathione(GSH) both in Arabidopsis and Brassica crops, fine-tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1(BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate-limiting enzyme adenosine 5′-phosphosulfate reductases in the primary sulfur metabolic pathway.In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions.These findings expand our understanding of BR promoting plant growth from a metabolism perspective.展开更多
文摘Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low efficiency of homologous recombination and poor availability of exogenous donor DNA as repair templates strongly impede the use of HDR for precise genome editing in many species (Komor et al., 2017a). To complement the HDR method and circumvent some of its limitations.
基金supported by the Identification of the Common Nutrients of Edible Agricultural Products and the Character Nutrients of Special Agricultural Products and Their Key Control Points of Quality,China (GJFP201701501)the Chongqing Program for Production of Late Maturing Citrus Fruits,China (20174-4)+2 种基金the Program for Talent Introduction of Chongqing Three Gorges University,China (14RC05)the Program for Chongqing Municipal Education Commission,China (KJ1501015)the Program for Chongqing Science & Technology Commission,China (cstc2016jcyj A0555)
文摘The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was tested by 2,2-diphenyl-l-picrylhydra- zyl radicals (DPPH) method and 2,2'-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) method. The total phenolic and flavonoid contents, and their antioxidant capacity varied in different citrus fruit tissues. Generally, the peel had both the highest average of total phenolics (27.18 mg gallic acid equivalent (GAE) g^-1 DW) and total flavonoids (38.97 mg rutin equivalent (RE) g^-1 DW). The highest antioxidant capacity was also the average of DPPH value (21.92 mg vitamin C equiv- alent antioxidant capacity (VCEAC) g^-1 DW) and average of ABTS value (78.70 mg VCEAC g-1 DW) in peel. The correlation coefficient between the total phenolics and their antioxidant capacity of different citrus fruits tissues ranged from 0.079 to 0.792, and from -0.150 to 0.664 for the total flavonoids. The antioxidant capacity of fruit tissues were correlated with the total phenoilc content and flavonoid content except in case of the peel. In addition, the total phenolic content and antioxidant capacity varied in different citrus genotypes. Manju and Karamandarin were better genotypes with higher antioxidation and the phenolic content, however Shagan was the poorest genotype with lower antioxidation and the phenolic content.
文摘CRISPR/Cas9 genome editing relies on sgRNA-target DNA base pairing and a short downstream PAM sequence to recognize target DNA. The strict protospacer adjacent motif (PAM) requirement hinders applications of the CRISPR/Cas9 system since it restricts the targetable sites in the genomes. xCas9 and SpCas9-NG are two recently engineered SpCas9 variants that can recognize more relaxed NG PAMs, implying a great potential in addressing the issue of PAM constraint. Here we use stable transgenic lines to evaluate the efficacies of xCas9 and SpCas9-NG in performing gene editing and base editing in rice. We found that xCas9 can efficiently induce mutations at target sites with NG and GAT PAM sequences in rice. However, base editors containing xCas9 failed to edit most of the tested target sites. SpCas9-NG exhibited a robust editing activity at sites with various NG PAMs without showing any preference for the third nucleotide after NG. Moreover, we showed that xCas9 and SpCas9-NG have higher specificity than SpCas9 at the CGG PAM site. We further demonstrated that different forms of cytosine or adenine base editors containing SpCas9-NG worked efficiently in rice with broadened PAM compatibility. Taken together, our work has yielded versatile genome-engineering tools that will significantly expand the target scope in rice and other crops.
基金This work was supported by National Natural Science Foundation of China (31200615, 31600238), Postgraduate Research and Innovation Project of Hunan Province (CX2014B302), National Key Laboratory Cultivation Base Construction Project (15KFXM09), the National Science-Technology Support Plan Projects of China (2012BAI29B04), The talent introduction Science Foundation of Hunan Agricultural University (13YJ09), and the Natural Science Foundation of Hunan Province (2016JJ4040).
文摘The overuse of antibiotics in animal agriculture and medicine has caused a series of potential threats to public health. Macleaya cordata is a medicinal plant species from the Papaveraceae family, providing a safe resource for the manufacture of antimicrobial feed additive for livestock. The active constituents from M. cordata are known to include benzylisoquinoline alkaloids (BIAs) such as sanguinarine (SAN) and chelerythrine (CHE), but their metabolic pathways have yet to be studied in this non-model plant. The active biosynthesis of SAN and CHE in M. cordata was first examined and confirmed by feeding ^13C-labeled tyrosine. To gain further insights, we de novo sequenced the whole genome of M. cordata, the first to be sequenced from the Papaveraceae family. The M. cordata genome covering 378 Mb encodes 22,328 predicted protein-coding genes with 43.5% being transposable elements. As a member of basal eudicot, M. cordata genome lacks the paleohexaploidy event that occurred in almost all eudicots. From the genomics data, a complete set of 16 metabolic genes for SAN and CHE biosynthesis was retrieved, and 14 of their biochemical activities were validated. These genomics and metabolic data show the conserved BIA metabolic pathways in M. cordata and provide the knowledge foundation for future productions of SAN and CHE by crop improvement or microbial pathway reconstruction.
基金supported by the Chinese Academy of Sciences and the Strategic Priority Research Program(Grant No.XDB27040101)of the Chinese Academy of Sciences。
文摘A recent paper by Kidokoro et al.(2020)in The Plant Cell reported a transgene-dependent transcriptional silencing phenomenon in the dominant ice1-1 Arabidopsis mutant containing the CBF3-LUC reporter,and questioned whether ICE1 may regulate CBF genes and may be involved in plant cold response.Here,we evaluate available evidence supporting the involvement of ICE1 in plant cold response,and provide ChIP-seq data showing ICE1 binding to the promoters of CBF genes and other regulatory genes known to be critical for cold response as well as to the promoters of some COR genes.
文摘Insertion mutations that disrupt the function of PHT4;6 (At5g44370) cause NaCI hypersensitivity of Arabidopsis seedlings that is characterized by reduced growth of the primary root, enhanced lateral branching, and swelling of root tips. Mutant phenotypes were exacerbated by sucrose, but not by equiosmolar concentrations of mannitol, and attenuated by low inorganic phosphate in the medium. Protein PHT4;6 belongs to the Major Facilitator Superfamily of permeases that shares significant sequence similarity to mammalian type-I Pi transporters and vesicular glutamate transporters, and is a member of the PHT4 family of putative intracellular phosphate transporters of plants. PHT4;6 localizes to the Golgi membrane and transport studies indicate that PHT4;6 facilitates the selective transport of Pi but not of chloride or inorganic anions. Phenotypic similarities with other mutants displaying root swelling suggest that PHT4;6 likely functions in protein N-glycosylation and cell wall biosynthesis, which are essential for salt tolerance. Together, our results indicate that PHT4;6 transports Pi out of the Golgi lumenal space for the re-cycling of the Pi released from glycosylation processes.
基金supported by the National Key Research and Development Program of China(2016YFA0500503)the Fundamental Research Funds for the Central Universities(2662018PY075)+1 种基金the National Natural Science Foundation of China(31730066,91540112)the Huazhong Agricultural University's Scientific and Technological Self-innovation Foundation(2015RC014).
文摘Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors,the phytohormone abscisic acid(ABA)prevents premature germination and seedling growth under unfavorable conditions.However,little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted.Here,we report that ABA Signaling Terminator(ABT),a WD40 protein,efficiently switches off ABA signaling and is critical for seed germination and seedling establishment.ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner.Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA,whereas knockout of ABT has the opposite effect.We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins,interferes with the interaction between PYR1/PYL4 and ABI1/ABI2,and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4,thereby terminating ABA signaling.Taken together,our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis.
文摘The remodeling of root architecture is a major developmental response of plants to phosphate (Pi) deficiency and is thought to enhance a plant's ability to forage for the available Pi in topsoil. The underlying mechanism controlling this response, however, is poorly understood. In this study, we identified an Arabidopsis mutant, hps 10 (hypersensitive to Pi starvation 10), which is morphologically normal under Pi sufficient condition but shows increased inhibition of primary root growth and enhanced production of lateral roots under Pi defi- ciency, hpslO is a previously identified allele (als3-3) of the ALUMINUM SENSITIVE3 (ALS3) gene, which is involved in plant tolerance to aluminum toxicity. Our results show that ALS3 and its interacting protein AtSTAR1 form an ABC transporter complex in the tonoplast. This protein complex mediates a highly electro- genic transport in Xenopus oocytes. Under Pi deficiency, als3 accumulates higher levels of Fe3+ in its roots than the wild type does. In Arabidopsis, LPR1 (LOW PHOSPHATE ROOT1) and LPR2 encode ferroxidases, which when mutated, reduce Fe3+ accumulation in roots and cause root growth to be insensitive to Pi defi- ciency. Here, we provide compelling evidence showing that ALS3 cooperates with LPR1/2 to regulate Pi deficiency-induced remodeling of root architecture by modulating Fe homeostasis in roots.
基金This work was financially supported in part by Programs(2018YFD0200803),(2017RS3061),(2018GK2013),(2017NK2382),(2017YFD0301507)and(2018JJ3227).
文摘The harvesting time of fresh tea leaves has a significant impact on product yield and quality.The aim of this study was to propose a method for real-time monitoring of the optimum harvesting time for picking fresh tea leaves based on machine vision.Firstly,the shapes of fresh tea leaves were distinguished from RGB images of the tea-tree canopy after graying with the improved B-G algorithm,filtering with a median filter algorithm,binary processing with the Otsu algorithm,and noise reduction and edge smoothing using open and close operations.Then the leaf characteristics,such as leaf area index,average length,and leaf identification index,were calculated.Based on these,the Bayesian discriminant principle and method were used to construct a discriminant model for fresh tea-leaf collection status.When this method was applied to a RGB tea-tree canopy image acquired at 45°shooting angle,the fresh tea-leaf recognition rate was 90.3%,and the accuracy for fresh tea-leaf harvesting status was 98%by cross validation.Hence,this method provides the basic conditions for future tea-plantation operation and management using information technology,automation,and intelligent systems.
基金supported by the National Natural Science Foundation of China (31260467)the Introduction of Talent of Southwest University from China (SWU112075)
文摘In order to recognize the key flavor compounds influencing the consumers' choice for honey peach, nectarine, and flat peach and provide important information for orientation breeding, sugars, organic acids, and aroma volatiles in 3 types of peaches were examined by high performance liquid chromatography(HPLC) and gas chromatography–mass spectrometry(GC–MS) and their key individual characteristic flavor compounds were identified by multivariate analysis integrated with consumers' evaluation. No significant differences in sugar and organic acid were observed between 3 types of peaches. In hierarchical clustering analysis(HCA) and principal component analysis(PCA)models, 3 types of peaches could not be differentiated by sugars or organic acids, but could be identified completely by aroma volatiles or by flavor compounds. A partial least squares regression(PLSR) model revealed that the key individual characteristic volatiles in nectarine, honey peach, and flat peach are C9 compounds and terpenic compounds, norisoprenoids and C6 compounds, and benzaldehyde, γ-decalactone, andδ-dodecalactone, respectively. These results suggest that sugars and organic acids form the background flavor of peach fruit and lactones shape the typical peach aroma. However, the individual aroma volatiles play the decisive role in unique flavor determination of different types of peaches.
基金supported by the National Key Research and Development Program of China(2018YFD1000300)the National Natural Science Foundation of China(Grant No.31772264)to Y.-Q.W.,and NSF support(IOS-1901566)to S.X.
文摘Grapevine(Vitis vinifera),one of the most economically important fruit crops in the world,suffers significant yield losses from powdery mildew,a major fungal disease caused by Erysiphe necator.In addition to suppressing host immunity,phytopathogens modulate host proteins termed susceptibility(S)factors to promote their proliferation in plants.In this study,CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated 9)technology was used to enable the targeted mutagenesis of MLO(mildew resistance Locus O)family genes that are thought to serve as S factors for powdery mildew fungi.Small deletions or insertions were induced in one or both alleles of two grapevine MLO genes,VvMLO3 and VvMLO4,in the transgenic plantlets of the powdery mildew-susceptible cultivar Thompson Seedless.The editing efficiency achieved with different CRISPR/Cas9 constructs varied from 0 to 38.5%.Among the 20 VvMLO3/4-edited lines obtained,one was homozygous for a single mutation,three harbored biallelic mutations,seven were heterozygous for the mutations,and nine were chimeric,as indicated by the presence of more than two mutated alleles in each line.Six of the 20 VvMLO3/4-edited grapevine lines showed normal growth,while the remaining lines exhibited senescence-like chlorosis and necrosis.Importantly,four VvMLO3-edited lines showed enhanced resistance to powdery mildew,which was associated with host cell death,cell wall apposition(CWA)and H2O2 accumulation.Taken together,our results demonstrate that CRISPR/Cas9 genome-editing technology can be successfully used to induce targeted mutations in genes of interest to improve traits of economic importance,such as disease resistance in grapevines.
基金supported by the China Agriculture Research System(CARS-28-01-07)Project of Science and Technology Development Plan in Shandong Province(2014GNC110017)+2 种基金Shandong Provincial Improved Variety Engineering System Foundation(620902)National Foundation for Science and Technology Twelfth Five-year in Rural Areas(2013BAD02B01)the National Science and Technology Support Projects in Twelfth Five-year Plan of China(2013BAD02B00)
文摘Apple Glomerella leaf spot(GLS) is a destructive fungal disease that damages apple leaves during the summer in China.Breeding new diseaseresistant varieties is considered to be the best way of controlling GLS.A genetic study of resistance to Glomerella leaf spot(GLS) in apple was conducted by using four F_1 hybrid groups(‘Fuji' בGolden Delicious',‘Golden Delicious' בFuji',‘Gala' בFuji',and ‘Fuji' בQF-2') generated from two highly resistant varieties or selections,‘Fuji' and ‘QF-2',and two highly susceptible varieties,‘Golden Delicious' and ‘Gala'.The results showed that the separation ratios of resistant plants to the susceptible ones in the four F_1 hybrid groups were statistically consistent with the theoretical ratios of 1:1,1:1,0:1,and 1:0.Comprehensive analysis enabled us to generate the following conclusions:GLS resistance in apple may be controlled by a single recessive gene.The genotype of the resistant plants was rr,whereas the genotypes of the susceptible ones were RR and Rr.By using ‘Golden Delicious' בFuji' F_1 hybrid groups and the bulked segregation analysis(BSA) method,the marker S0506206-243 bp associated with disease resistance character to GLS was identified through screening 500 SSR primers encompassing the entire apple genome with even coverage,and the genetic distance between the marker and the GLS resistance gene was 9.8 cM.
基金This work was supported by Jiangsu Seed Industry Revitalization Project,China[JBGS(2021)071]Fundamental Research Funds for the Central Universities,China(YDZX2023019)+3 种基金the National Natural Science Foundation of China(32172579)the earmarked fund for Jiangsu Agricultural Industry Technology System,China[JATS(2023)421]the Jiangsu Postgraduate Scientific Research Innovation Plan,China(KYCX21_0610-2021)the Project Founded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD).
文摘Virus-induced gene silencing(VIGS)and clustered regularly interspaced short palindromic repeats/CRISPR-associated protein(CRISPR/Cas)systems are effective technologies for rapid and accurate gene function verification in modern plant biotechnology.However,the investigation of gene silencing and editing in radish remains limited.In this study,a bleaching phenotype was generated through the knockdown of RsPDS using tobacco rattle virus(TRV)-and turnip yellow mosaic virus(TYMV)-mediated gene silencing vectors.The TYMV-mediated gene silencing efficiency was higher than the TRV-based VIGS system in radish.The expression level of RsPDS was significantly inhibited using VIGS in'NAU-067'radish leaves.The rootless seedlings of‘NAU-067'were infected with Agrobacterium rhizogenes using the 2300GN-Ubi-RsPDS-Cas9 vector with two target sequences.Nine adventitious roots were blue with GUs staining,and four of these adventitious roots were edited at target sequence 1 of the RsPDS gene as indicated by Sanger sequencing.Furthermore,albino lines were generated with A.tumefaciens-mediated transformation of radish cotyledons.Five base substitutions and three base deletions occurred at target sequence 2 in Line 1,and three base insertions and three base substitutions occurred at target sequence 1 in Line 2.This study shows that VIGS and CRISPR/Cas9 techniques can be employed to precisely verify the biological functions of genes in radish,which will facilitate the genetic improvement of vital horticultural traits in radish breeding programs.
基金Supported by the Breeding Techniques for New Varieties of Acanthopanax senticosus(CZKYF2022-1-B023)。
文摘In order to optimize the ultrasonic extraction technique for the total flavonoid of leaf yellows plus, the contents of 21 leaf yellows plus total flavonoid from four regions in Heilongjiang Province were comparatively analyzed. The ultrasonic extraction technology was optimized by Box-Behnken response surface method, and the total flavonoid content of 21 kinds of Acanthopanax senticosus(Rupr. et Maxim.) Harms from different producing areas were analyzed by cluster analysis. The optimal process conditions were determined as ultrasonic time 30 min, solid-liquid ratio 1 : 12 and ultrasonic power 250 W, and the average yield of the total flavonoid was 1.453 mg·g^ (-1). By optimizing the ultrasonic-assisted extraction method, the total flavonoid content from different producing areas was compared in the experiment, which provided certain data support for the optimization of the extraction process in the future and laid a certain theoretical foundation for the quality analysis of Chinese medicinal materials.
文摘Horticulture is an important part of agricultural planting and production, which is of great significance for enriching human nutrition and beautifying and transforming the human living environment. At present, the area of horticultural crops in China is about 40 million ha, accounting for about onefourth of the national crop planting area, while the production of primary agricultural products is 1 billion tons, and the output value accounts for more than half of the total output value of the planting industry.
基金supported by the National Natural Science Foundation of China (32172521)the Excellent Youth Science Foundation of Heilongjiang Province,China (YQ2023C006)+1 种基金the Talent Introduction Program of Northeast Agricultural University of Chinathe Collaborative Innovation System of the Agricultural Bio-economy in Heilongjiang Province,China
文摘Sucrose phosphate synthase(SPS)is a rate-limiting enzyme that works in conjunction with sucrose-6-phosphate phosphatase(SPP)for sucrose synthesis,and it plays an essential role in energy provisioning during growth and development in plants as well as improving fruit quality.However,studies on the systematic analysis and evolutionary pattern of the SPS gene family in apple are still lacking.In the present study,a total of seven MdSPS and four MdSPP genes were identified from the Malus domestica genome GDDH13 v1.1.The gene structures and their promoter cis-elements,protein conserved motifs,subcellular localizations,physiological functions and biochemical properties were analyzed.A chromosomal location and gene-duplication analysis demonstrated that whole-genome duplication(WGD)and segmental duplication played vital roles in MdSPS gene family expansion.The Ka/Ks ratio of pairwise MdSPS genes indicated that the members of this family have undergone strong purifying selection during domestication.Furthermore,three SPS gene subfamilies were classified based on phylogenetic relationships,and old gene duplications and significantly divergent evolutionary rates were observed among the SPS gene subfamilies.In addition,a major gene related to sucrose accumulation(MdSPSA2.3)was identified according to the highly consistent trends in the changes of its expression in four apple varieties(‘Golden Delicious’,‘Fuji’,‘Qinguan’and‘Honeycrisp’)and the correlation between gene expression and soluble sugar content during fruit development.Furthermore,the virus-induced silencing of MdSPSA2.3 confirmed its function in sucrose accumulation in apple fruit.The present study lays a theoretical foundation for better clarifying the biological functions of the MdSPS genes during apple fruit development.
基金supported by the National-Natural Science Foundation of China(32072334),the General Project of the Education Department of Hunan Province(20C0959)the Changsha Natural Science Foundation(kq2007020).
文摘Background:Hyperglycemia is a typical symptom of diabetes.High glucose induces apoptosis of isletβcells.While autophagy functions in cytoprotection and autophagic cell death.The interaction between autophagy and apoptosis is important in the modulation of the function of isletβcells.Vitamin B3 can induce autophagy and inhibit isletβapoptosis.Method:The mechanism of vitamin B3-mediated protective effect on the function of isletβcells was explored by the method of western blot,immunofluorescence and flow cytometry.Results:In the present study,high glucose stress increased the apoptosis rate,while vitamin B3 reduced the apoptosis rate.The effect of vitamin B3 on autophagy flux under normal and high glucose stress was also investigated.Vitamin B3 increased the number of autophagosomes and increased the light chain(LC)3-II/LC3-I ratio.In contrast,vitamin B3 decreased sequestosome 1(SQSTM1)/p62 protein expression and inhibited the phosphorylation of mammalian ribosomal protein S6 kinaseβ-1(p70S6K/S6K1),which was a substrate of mammalian target of rapamycin(mTOR)under normal and high glucose stress.To further verify the protective effect of vitamin B3 on apoptosis,we treated isletβcell RIN-m5F with autophagy inhibitor 3-methyladenine(3-MA).Vitamin B3 decreased the apoptosis rate under high glucose stress,while the inhibition of apoptosis by vitamin B3 was blocked after adding 3-MA.Conclusion:Our data suggested that vitamin B3 reduced the apoptosis rate ofβcells,possibly through inducing autophagy under high glucose stress.
基金supported by the earmarked fund for China Agriculture Research System(CARS-25-A-15)the Breeding of New Staple Vegetable Varieties of Heilongjiang Province,China(GA15B103)+2 种基金the Natural Science Foundation of Heilongjiang Province,China(C2017024)the Youth Talent Support Program of Northeast Agricultural University,China(17QC07)the National Natural Science Foundation of China(31501777)
文摘Zinc finger-homeodomain proteins(ZF-HDs) are transcription factors that regulate plant growth,development,and abiotic stress tolerance.The SL-ZH13 gene was found to be significantly upregulated under drought stress treatment in tomato(Solanum lycopersicum) leaves in our previous study.In this study,to further understand the role that the SL-ZH13 gene plays in the response of tomato plants to drought stress,the virus-induced gene silencing(VIGS) method was applied to downregulate SL-ZH13 expression in tomato plants,and these plants were treated with drought stress to analyze the changes in drought tolerance.The SL-ZH13 silencing efficiency was confirmed by quantitative real-time PCR(qRT-PCR) analysis.In SL-ZH13-silenced plants,the stems wilted faster,leaf shrinkage was more severe than in control plants under the same drought stress treatment conditions,and the mean stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants.Physiological analyses showed that the activity of superoxide dismutase(SOD) and peroxidase(POD) and the content of proline(Pro) in SL-ZH13-silenced plants were lower than those in control plants after 1.5 and 3 h of drought stress treatment.The malondialdehyde(MDA) content in SL-ZH13-silenced plants was higher than that in control plants after 1.5 and 3 h of drought stress treatment,and H2O2 and O2^-· accumulated much more in the leaves of SL-ZH13-silenced plants than in the leaves of control plants.These results suggested that silencing the SL-ZH13 gene affected the response of tomato plants to drought stress and decreased the drought tolerance of tomato plants.
基金financially supported by the National Key R&D Program of China (2023YFD1600800)the National Nature Science Foundation of China (32102321)+4 种基金the Chongqing Science and Technology Commission, China (cstc2024ycjh-bgzxm0202, cstc2021jscx-gksbX0010 and cstc2021jcyj-msxmX1156)the Chongqing Forestry Administration, China (YuLinKeYan2022-14)the Innovation Research Group Funds for Chongqing Universities, China (CXQT19005)the Characteristic Fruit Industry and Technology System Innovation Team of Chongqing Agriculture and Rural Affairs Commission, China [(2022)164 and 2020(3)01]the Chongqing Postgraduate Research and Innovation Programme, China (CYB23128)
文摘The Gibberellic Acid-stimulated Arabidopsis(GASA)gene family is involved in the regulation of gene expression and plant growth,development,and stress responses.To investigate the function of loquat GASA genes in the growth and developmental regulation of plants,a loquat EjGASA6 gene homologous to Arabidopsis AtGASA6 was cloned.EjGASA6 expression was induced by gibberellin,and ectopic transgenic plants containing this gene exhibited earlier bloom and longer primary roots since these phenotypic characteristics are related to higher gibberellin content.Transcriptome analysis and qRT-PCR results showed that the expression levels of GA3ox1 and GA20ox1,which encode key enzymes in gibberellin biosynthesis,were significantly increased.Furthermore,we confirmed that EjGASA6 could promote the expression of GA20ox1 via the luciferase reporter system.Overall,our results suggest that EjGASA6 promotes blooming and main-root elongation by positively regulating gibberellin biosynthesis.These findings broaden our understanding of the role of GASAs in plant development and growth,and lay the groundwork for future research into the functions of EjGASA6 in regulating loquat growth and development.
基金supported by the National Science Foundation of China (31830078, 32172593, and 32202466)Zhejiang Provincial Ten-thousand Program for Leading Talents of Science and Technology Innovation (2018R52026)。
文摘For adaptation to ever-changing environments,plants have evolved elaborate metabolic systems coupled to a regulatory network for optimal growth and defense. Regulation of plant secondary metabolic pathways such as glucosinolates(GSLs) by defense phytohormones in response to different stresses and nutrient deficiency has been intensively investigated, while how growth-promoting hormone balances plant secondary and primary metabolism has been largely unexplored. Here, we found that growth-promoting hormone brassinosteroid(BR) inhibits GSLs accumulation while enhancing biosynthesis of primary sulfur metabolites, including cysteine(Cys) and glutathione(GSH) both in Arabidopsis and Brassica crops, fine-tuning secondary and primary sulfur metabolism to promote plant growth. Furthermore, we demonstrate that of BRASSINAZOLE RESISTANT 1(BZR1), the central component of BR signaling, exerts distinct transcriptional inhibition regulation on indolic and aliphatic GSL via direct MYB51 dependent repression of indolic GSL biosynthesis, while exerting partial MYB29 dependent repression of aliphatic GSL biosynthesis. Additionally, BZR1 directly activates the transcription of APR1 and APR2 which encodes rate-limiting enzyme adenosine 5′-phosphosulfate reductases in the primary sulfur metabolic pathway.In summary, our findings indicate that BR inhibits the biosynthesis of GSLs to prioritize sulfur usage for primary metabolites under normal growth conditions.These findings expand our understanding of BR promoting plant growth from a metabolism perspective.