Tungsten(W) materials are gaining more and more attention due to the extended applications of metallic systems in the extreme environments.Given W’s unique characteristics like room-temperature brittleness,additive m...Tungsten(W) materials are gaining more and more attention due to the extended applications of metallic systems in the extreme environments.Given W’s unique characteristics like room-temperature brittleness,additive manufacturing(AM)techniques could give them a higher design flexibility and manufacturability.With the growing focus and thriving development of W-faced AM techniques,since the mechanical performance of additively manufactured W parts is still unsatisfactory,a critical review to further explore the possibilities of combining W and AM processes is urgently needed.In this review,we systematically explain the fundamentals of AM processes for W materials.Following the traditional classification,we further discuss the widely used AM processes including wire arc additive manufacturing(WAAM),electron beam melting(EBM),laser powder bed fusion(LPBF),laser direct energy deposition(laser DED),and other modified yet emergent AM techniques.Accordingly,since additively manufacturing W materials is processing parameter-sensitive,we illustrated the effects of various important processing parameters on the AM process control and final parts’ quality.With this detailed understanding,various categories of AM-compatible W materials(i.e.,pure W,W alloys,and W composites) were presented,and their general mechanical performance,distinct role(particularly the role of different alloying elements and added secondary-phase particles in W),and application-oriented benefits have been summarized.After clarifying the current status,main challenges,and triumphant successes for additively manufacturing W materials,we further provide a concise prospect into the development of additively manufactured(AMed) W materials by integrating potential fabrication,measurement,alloy design,and application’s considerations.In summary,this critical review investigates the fundamental and practical problems crucially limiting the applications of AMed W materials,and the comprehensive discussion concentrates the history of the development and co展开更多
A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13...A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13 TeV.The data correspond to a total integrated luminosity of 9 fb^-1.No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c^2.Upper limits are set at 95%credibility level on the ratio of the ■^+cc production cross-section times the branching fraction to that ofΛ^+c and ■^++cc baryons.The limits are determined as functions of the ■^+cc mass for different lifetime hypotheses,in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c.展开更多
First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark w...First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.展开更多
The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in...The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.展开更多
Coherent diffraction imaging enables the imaging of individual defects,such as dislocations or stacking faults,in materials.These defects and their surrounding elastic strain fields have a critical influence on the ma...Coherent diffraction imaging enables the imaging of individual defects,such as dislocations or stacking faults,in materials.These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials.However,their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data mining.The ability to identify defects from the diffraction pattern alone would be a significant advantage when targeting specific defect types and accelerates experiment design and execution.Here,we exploit a computational tool based on a three-dimensional(3D)parametric atomistic model and a convolutional neural network to predict dislocations in a crystal from its 3D coherent diffraction pattern.Simulated diffraction patterns from several thousands of relaxed atomistic configurations of nanocrystals are used to train the neural network and to predict the presence or absence of dislocations as well as their type(screw or edge).Our study paves the way for defect-recognition in 3D coherent diffraction patterns for material science.展开更多
A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No signific...A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.展开更多
Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation...Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation and dehydrogenation of this group of materials.Severe plastic deformation(SPD)methods,such as equal-channel angular pressing(ECAP),high-pressure torsion(HPT),intensive rolling,and fast forging,have been widely used to enhance the activation,air resistance,and hydrogenation/dehydrogenation kinetics of Mg-based hydrogen storage materials by introducing ultrafine/nanoscale grains and crystal lattice defects.These severely deformed materials,particularly in the presence of alloying additives or second-phase nanoparticles,can show not only fast hydrogen absorption/desorption kinetics but also good cycling stability.It was shown that some materials that are apparently inert to hydrogen can absorb hydrogen after SPD processing.Moreover,the SPD methods were effectively used for hydrogen binding-energy engineering and synthesizing new magnesium alloys with low thermodynamic stability for reversible low/room-temperature hydrogen storage,such as nanoglasses,high-entropy alloys,and metastable phases including the high-pressureγ-MgH2 polymorph.This work reviews recent advances in the development of Mg-based hydrogen storage materials by SPD processing and discusses their potential in future applications.展开更多
Increasing the coverage and capacity of cellular networks by deploying additional base stations is one of the fundamental objectives of fifth-generation(5G)networks.However,it leads to performance degradation and huge...Increasing the coverage and capacity of cellular networks by deploying additional base stations is one of the fundamental objectives of fifth-generation(5G)networks.However,it leads to performance degradation and huge spectral consumption due to the massive densification of connected devices and simultaneous access demand.To meet these access conditions and improve Quality of Service,resource allocation(RA)should be carefully optimized.Traditionally,RA problems are nonconvex optimizations,which are performed using heuristic methods,such as genetic algorithm,particle swarm optimization,and simulated annealing.However,the application of these approaches remains computationally expensive and unattractive for dense cellular networks.Therefore,artificial intelligence algorithms are used to improve traditional RA mechanisms.Deep learning is a promising tool for addressing resource management problems in wireless communication.In this study,we investigate a double deep Q-network-based RA framework that maximizes energy efficiency(EE)and total network throughput in unmanned aerial vehicle(UAV)-assisted terrestrial networks.Specifically,the system is studied under the constraints of interference.However,the optimization problem is formulated as a mixed integer nonlinear program.Within this framework,we evaluated the effect of height and the number of UAVs on EE and throughput.Then,in accordance with the experimental results,we compare the proposed algorithm with several artificial intelligence methods.Simulation results indicate that the proposed approach can increase EE with a considerable throughput.展开更多
A 2-D mathematical model is developed in order to simulate a parametric electromagnetic instability oscillation process of a liquid metal droplet under the action of low frequency magnetic field. The Arbitrary Lagrang...A 2-D mathematical model is developed in order to simulate a parametric electromagnetic instability oscillation process of a liquid metal droplet under the action of low frequency magnetic field. The Arbitrary Lagrangian-Eulerian (ALE) method and weak form constraint boundary condition are introduced in this model for implementation of the surface tension and electromagnetic force on liquid droplet free surface. The results of the numerical calculations indicate the appearance of various regimes of oscillation. It is found that according to the magnetic field frequency various types of oscillation modes may be found. The oscillation is originated from an instability phenomenon. The stability diagram of liquid metal droplet in the parameter space of magnetic frequency and magnetic flux density is determined numerically. The diagram is very similar to that found in the so-called parametric instability.展开更多
Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea....Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea. A remarkable diversity of morphotypes was observed, including multicellular types that seemed to differ from those previously found in North and South America. Another interesting organism was one with magnetosomes arranged in a six-stranded bundle which occupied one third of the cell width. The magnetosome bundle was evident even under optic microscopy. These cells were connected together and swam as a linear entire unit. Magnetosomes did not always align up to form a straight linear chain. A chain composed of rectangle magnetosomes bent at a posi- tion with an oval crystal. High resolution transmission electron microscopy analysis of the crystal at the pivotal position suggested uncompleted formation of the crystal. This is the first report of Mediterranean magnetotactic bacteria, which should be useful for studies of biogeochemical cycling and geohistory of the Mediterranean Sea.展开更多
Gold, nickel and copper are usually used in connector of the smart card. Since Au is expensive and Ni is an allergenic material, simulated (CES) and bibliographical work is carried out in order to replace the Au and N...Gold, nickel and copper are usually used in connector of the smart card. Since Au is expensive and Ni is an allergenic material, simulated (CES) and bibliographical work is carried out in order to replace the Au and Ni layer in smart card connectors without sacrificing reliability. During the work, mechanical and electrical properties, corrosion resistance, cost, toxicity and process compatibility of the samples have been taken into consideration. Cu alloying with Zn or Sn, Cr and stainless steel were selected for electrodeposition process. Secondly, carbides (WC, TiC, ZrC), Ti, TiN, borides (TiB2) and silicide (MoSi2) are considered as a vapour deposited materials and some Cu alloying with Al, N or Mg also considered via ion implantation processes. But, vapour deposition and implantation are high energy processes compared to the electrodeposition process, which is expensive. Therefore, electrodeposited materials such as, Cu alloys (Brass or bronze), Cr and stainless steel could be considered as promising candidate to replace the Au and Ni layer in smart card connectors.展开更多
NaYF_(4):Eu nanorods with high aspect ratios are elaborated and optically trapped using dual fiber optical tweezers in a counterpropagating geometry. High trapping efficiency is observed using converging beams, emitte...NaYF_(4):Eu nanorods with high aspect ratios are elaborated and optically trapped using dual fiber optical tweezers in a counterpropagating geometry. High trapping efficiency is observed using converging beams, emitted from diffractive Fresnel lenses directly 3D printed onto cleaved fiber facets. Stable nanorod trapping and alignment are reported for a fiber-to-fiber distance of 200 μm and light powers down to 10 m W. Trapping of nanorod clusters containing one to three nanorods and the coupling of nanorod motion in both axial and transverse directions are considered and discussed. The europium emission is studied by polarization-resolved spectroscopy with particular emphasis on the magnetic and electric dipole transitions. The respective σ and π orientations of the different emission lines are determined. The angles with respect to the nanorod axes of the corresponding magnetic and electric dipoles are calculated. Mono-exponential emission decay with decay time of 4–5 ms is reported. It is shown that the nanorod orientation can be determined by purely spectroscopic means.展开更多
The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed f...The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity.The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations,multi-metal spinel oxides with precise compositions can be obtained,and used as catalyst precursor for the reverse water-gas shift reaction.The differences in the spinel initial composition and structure,determined by neutron powder diffraction,influence the overall catalytic activity with changes in the process of in s itu formation of active,metal-oxide supported metal nanoparticles,which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.展开更多
This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine th...This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.展开更多
The paper studies specific pumping characteristics of the annular linear pumps with travelling field(ALIP)for liquid sodium.This research represents a preliminary step in the study and development of very large electr...The paper studies specific pumping characteristics of the annular linear pumps with travelling field(ALIP)for liquid sodium.This research represents a preliminary step in the study and development of very large electromagnetic pumps able to provide high flow rates.Since in such cases the magnetic Reynolds number are quite large,it is necessary to take into account the full magnetohydrodynamic interaction between the electromagnetic field and the liquid metal flow inside the pumping channel.The case where the velocity field is uniform in the channel cross section is firstly considered. Then,the coupling between the electromagnetic aspects with the hydrodynamic ones in a 2D axisyrnmetric fmite element model is studied,in order to compare the magnetic convection and the magnetic diffusion.展开更多
The antibacterial finishing of cotton-based fabrics has been achieved from quaternary ammonium-based composite particles. This functionalization is based on the simple dilution of a quaternary ammonium cation (QAC) ...The antibacterial finishing of cotton-based fabrics has been achieved from quaternary ammonium-based composite particles. This functionalization is based on the simple dilution of a quaternary ammonium cation (QAC) hybrid alkoxide within a sol-gel derived crystalline suspension (CS) of TiO2 in liquid solution. This protocol yields the preparation of QAC-Ti02 (QT) composite sols by using a same CS over a long period of time, and enables an easy regeneration of derived QT sols after quite long aging periods. Composite sols can then be impregnated on various kinds of substrates, including textile fabrics. Fourier transform infrared spectroscopy studies, as well as optical and scanning electron microscopy observations, have been used to investigate chemical and morphological features arising from QT particles. Antibacterial tests have then been performed on so-finished textiles and are discussed in relation to chemical and morphological features. It is shown that this sol-gel route flexibly yields a similarly strong antibacterial activity on cotton-based fabrics against both Gram-negative and Gram-positive bacteria, Le. tested fabrics exhibit an antibacterial activity (a(~cording to the ISO 20743-2005 standard) ranging between 7.5 and 7.9 against both kinds of bacteria tested here. Finishing treatments also allow preserving the hand feeling and visual aspect of the textiles and promote a rather good attachment of impregnated particles on the surface of textile fibers.展开更多
The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic prop...The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic properties of the NiFe compound. Polarized spin within the framework of the ferromagnetic state between magnetic ions is considered. Also, magnetic moments considered to lie along (001) axes are computed. The Monte Carlo simulation is used to study the magnetic properties of NiFe. The transition temperature To, hysteresis loop, coercive field and remanent magnetization of the NiFe compound are obtained using the Monte Carlo simulation.展开更多
The engineering problems today become more and more complex particularly in the area of new product development. It requires the multi-disciplinary design method to solve complex problems. This paper presents an integ...The engineering problems today become more and more complex particularly in the area of new product development. It requires the multi-disciplinary design method to solve complex problems. This paper presents an integrated design system for solving complexity during multi-disciplinary design. Complexity could be solved if the design problems, given by any individuals who are concerned, are structured. The design system uses the multi-viewpoint concept to allow experts to share their information and knowledge in common views. Knowledge modules are used to store semantics from the experts of different disciplines. Then the system agent acts as an internal designer to help support the individuals to translate any semantics provided from one discipline and then propagate to other related disciplines. With these tools, the integrated design system can structure and solve the complexity of design problems.展开更多
The parametric instability behavior of a liquid mercury sessile drop under high frequency Amplitude-Modulate Magnetic Field(AMMF),i.e.a high frequency magnetic field(carder wave)modulated by a low frequency sine wave(...The parametric instability behavior of a liquid mercury sessile drop under high frequency Amplitude-Modulate Magnetic Field(AMMF),i.e.a high frequency magnetic field(carder wave)modulated by a low frequency sine wave(modulate wave),is investigated experimentally.The free surface contour of the mercury drop is observed by a CCD camera while varying the frequency and amplitude of the high frequency AMMF.At a given frequency and amplitude,the edge deformations with an azimuthal wave numbers(modes n=3,4,5,6)were excited.展开更多
文摘Tungsten(W) materials are gaining more and more attention due to the extended applications of metallic systems in the extreme environments.Given W’s unique characteristics like room-temperature brittleness,additive manufacturing(AM)techniques could give them a higher design flexibility and manufacturability.With the growing focus and thriving development of W-faced AM techniques,since the mechanical performance of additively manufactured W parts is still unsatisfactory,a critical review to further explore the possibilities of combining W and AM processes is urgently needed.In this review,we systematically explain the fundamentals of AM processes for W materials.Following the traditional classification,we further discuss the widely used AM processes including wire arc additive manufacturing(WAAM),electron beam melting(EBM),laser powder bed fusion(LPBF),laser direct energy deposition(laser DED),and other modified yet emergent AM techniques.Accordingly,since additively manufacturing W materials is processing parameter-sensitive,we illustrated the effects of various important processing parameters on the AM process control and final parts’ quality.With this detailed understanding,various categories of AM-compatible W materials(i.e.,pure W,W alloys,and W composites) were presented,and their general mechanical performance,distinct role(particularly the role of different alloying elements and added secondary-phase particles in W),and application-oriented benefits have been summarized.After clarifying the current status,main challenges,and triumphant successes for additively manufacturing W materials,we further provide a concise prospect into the development of additively manufactured(AMed) W materials by integrating potential fabrication,measurement,alloy design,and application’s considerations.In summary,this critical review investigates the fundamental and practical problems crucially limiting the applications of AMed W materials,and the comprehensive discussion concentrates the history of the development and co
基金support from CERN and from the national agencies:CAPES,CNPq,FAPERJ and FINEP(Brazil)MOST and NSFC(China)+11 种基金CNRS/IN2P3(France)BMBF,DFG and MPG(Germany)INFN(Italy)KWO(Netherlands)MNiSW and NCN(Poland)MEN/IFA(Romania)MinES and FASO(Russia)MinECo(Spain)SNSF and SER(Switzerland)NASU(Ukraine)STFC(United Kingdom)NSF(USA).
文摘A search for the doubly charmed baryon ■^+cc is performed through its decay to theΛ^+c K^-π^+ final state,using proton-proton collision data collected with the LHCb detector at centre-of-mass energies of 7,8 and 13 TeV.The data correspond to a total integrated luminosity of 9 fb^-1.No significant signal is observed in the mass range from 3.4 to 3.8 GeV/c^2.Upper limits are set at 95%credibility level on the ratio of the ■^+cc production cross-section times the branching fraction to that ofΛ^+c and ■^++cc baryons.The limits are determined as functions of the ■^+cc mass for different lifetime hypotheses,in the rapidity range from 2.0 to 4.5 and the transverse momentum range from 4 to 15 GeV/c.
文摘First evidence of a structure in the J/ψΛinvariant mass distribution is obtained from an amplitude analysis of■b^(-)J/ψΛK^(-)decays.The observed structure is consistent with being due to a charmonium pentaquark with strangeness with a significance of 3.1r including systematic uncertainties and lookelsewhere effect.Its mass and width are determined to be 4458:8±2:9t4:7-1:1 MeV and 17:3±6:5t8:0-5:7 MeV,respectively,where the quoted uncertainties are statistical and systematic.The structure is also consistent with being due to two resonances.In addition,the narrow excited■^(-)states,N■(1690)and■(1820),are seen for the first time in a■b^(-)decay,and their masses and widths are measured with improved precision.The analysis is performed using pp collision data corresponding to a total integrated luminosity of 9 fb^(-1),collected with the LHCb experiment at centre-of-mass energies of 7,8 and 13 TeV.
基金Supported by CERNnational agencies:CAPES+30 种基金CNPqFAPERJFINEP(Brazil)MOSTNSFC(China)CNRS/IN2P3(France)BMBFDFGMPG(Germany)INFN(Italy)NWO(Netherlands)MNiSWNCN(Poland)MEN/IFA(Romania)MSHE(Russia)MinECo(Spain)SNSFSER(Switzerland)NASU(Ukraine)STFC(United Kingdom)DOE NPNSF(USA)Key Research Program of Frontier Sciences of CAS,CAS PIFIthe Thousand Talents Program(China)RFBRRSFYandex LLC(Russia)GVAXuntaGalGENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)
文摘The production of ■baryons in proton-proton collisions at a centre-of-mass energy of √s = 13 TeV is measured in the transverse-momentum range 4<pT<15GeV/c and the rapidity range2.0<y<4.5.The data used in this measurement correspond to an integrated luminosity of 1.7fb^-1,recorded by the LHCb experiment during 2016.The ratio of the ■ production cross-section times the branching fraction of the■→∧^+cK^-π^+ π^+decay relative to the prompt ∧^+c production cross-section is found to be(2.22±0.27±0.29)×10^-4,assuming the central value of the measured lifetime,where the first uncertainty is statistical and the second systematic.
基金We acknowledge the financial support from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.818823)We also thank the support of a grant from the Ministry of Science&Technology,Israel and CNRS,France.
文摘Coherent diffraction imaging enables the imaging of individual defects,such as dislocations or stacking faults,in materials.These defects and their surrounding elastic strain fields have a critical influence on the macroscopic properties and functionality of materials.However,their identification in Bragg coherent diffraction imaging remains a challenge and requires significant data mining.The ability to identify defects from the diffraction pattern alone would be a significant advantage when targeting specific defect types and accelerates experiment design and execution.Here,we exploit a computational tool based on a three-dimensional(3D)parametric atomistic model and a convolutional neural network to predict dislocations in a crystal from its 3D coherent diffraction pattern.Simulated diffraction patterns from several thousands of relaxed atomistic configurations of nanocrystals are used to train the neural network and to predict the presence or absence of dislocations as well as their type(screw or edge).Our study paves the way for defect-recognition in 3D coherent diffraction patterns for material science.
基金support from AvH Foundation(Germany)EPLANET,Marie Sk lodowska-Curie Actions and ERC(European Union)+11 种基金A*MIDEXANRLabex P2IOOCEVURégion Auvergne-Rh?ne-Alpes(France)Key Research Program of Frontier Sciences of CASCAS PIFIThousand Talents ProgramSci.&Tech.Program of Guangzhou(China)RFBR,RSF and Yandex LLC(Russia)GVA,Xunta Gal and GENCAT(Spain)the Royal Society and the Leverhulme Trust(United Kingdom)。
文摘A search for the rare decay B^(0)→J/ψФis performed using Pp collision data collected with the LHCb dete-ctor at centre-of-mass energies of 7,8 and 13 TeV,corresponding to an integrated luminosity of9 fb.No significant signal of the decay is observed and an upper limitof 1.1x 10^(-7)at 90%confidence level is set on the branching fraction.
基金supported in part by the Light Metals Educational Foundation of Japan,and in part by the MEXT,Japan through Grants-in-Aid for Scientific Research on Innovative Areas(Nos.JP19H05176&JP21H00150)the Challenging Research Exploratory(Grant No.JP22K18737)+6 种基金W.J.Botta is grateful to the Brazilian agencies FAPESP(Grant No.2013/05987-8)CNPq(Grant Nos.421181-2018-4 and 307397-2019-0)the financial support and to the Laboratory of Structural Characterization(LCE-DEMa-UFSCar)for general electron microscopy facilities.R.Floriano thanks for the financial support from FAPESP(Grant No.2022/01351-0)support from the French State through the ANR-21-CE08-0034-01 project as well as the program“Investment in the future”operated by the National Research Agency(ANR)referenced under No.ANR-11-LABX-0008-01(Labex DAMAS)support from the National Natural Science Foundation of China(Grant No.52171205)support from the National Natural Science Foundation of China(Grant No.52071157).
文摘Magnesium and its alloys are the most investigated materials for solid-state hydrogen storage in the form of metal hydrides,but there are still unresolved problems with the kinetics and thermodynamics of hydrogenation and dehydrogenation of this group of materials.Severe plastic deformation(SPD)methods,such as equal-channel angular pressing(ECAP),high-pressure torsion(HPT),intensive rolling,and fast forging,have been widely used to enhance the activation,air resistance,and hydrogenation/dehydrogenation kinetics of Mg-based hydrogen storage materials by introducing ultrafine/nanoscale grains and crystal lattice defects.These severely deformed materials,particularly in the presence of alloying additives or second-phase nanoparticles,can show not only fast hydrogen absorption/desorption kinetics but also good cycling stability.It was shown that some materials that are apparently inert to hydrogen can absorb hydrogen after SPD processing.Moreover,the SPD methods were effectively used for hydrogen binding-energy engineering and synthesizing new magnesium alloys with low thermodynamic stability for reversible low/room-temperature hydrogen storage,such as nanoglasses,high-entropy alloys,and metastable phases including the high-pressureγ-MgH2 polymorph.This work reviews recent advances in the development of Mg-based hydrogen storage materials by SPD processing and discusses their potential in future applications.
基金This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R323)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and Taif University Researchers Supporting Project Number TURSP-2020/34),Taif,Saudi Arabia。
文摘Increasing the coverage and capacity of cellular networks by deploying additional base stations is one of the fundamental objectives of fifth-generation(5G)networks.However,it leads to performance degradation and huge spectral consumption due to the massive densification of connected devices and simultaneous access demand.To meet these access conditions and improve Quality of Service,resource allocation(RA)should be carefully optimized.Traditionally,RA problems are nonconvex optimizations,which are performed using heuristic methods,such as genetic algorithm,particle swarm optimization,and simulated annealing.However,the application of these approaches remains computationally expensive and unattractive for dense cellular networks.Therefore,artificial intelligence algorithms are used to improve traditional RA mechanisms.Deep learning is a promising tool for addressing resource management problems in wireless communication.In this study,we investigate a double deep Q-network-based RA framework that maximizes energy efficiency(EE)and total network throughput in unmanned aerial vehicle(UAV)-assisted terrestrial networks.Specifically,the system is studied under the constraints of interference.However,the optimization problem is formulated as a mixed integer nonlinear program.Within this framework,we evaluated the effect of height and the number of UAVs on EE and throughput.Then,in accordance with the experimental results,we compare the proposed algorithm with several artificial intelligence methods.Simulation results indicate that the proposed approach can increase EE with a considerable throughput.
基金supported by the National Natural Science Foundation of China(Grant Nos.51274137,10872123)supported by the China Scholarship Council and Région Rhne-Alpes (France) for supporting Lei's visiting in Grenoble
文摘A 2-D mathematical model is developed in order to simulate a parametric electromagnetic instability oscillation process of a liquid metal droplet under the action of low frequency magnetic field. The Arbitrary Lagrangian-Eulerian (ALE) method and weak form constraint boundary condition are introduced in this model for implementation of the surface tension and electromagnetic force on liquid droplet free surface. The results of the numerical calculations indicate the appearance of various regimes of oscillation. It is found that according to the magnetic field frequency various types of oscillation modes may be found. The oscillation is originated from an instability phenomenon. The stability diagram of liquid metal droplet in the parameter space of magnetic frequency and magnetic flux density is determined numerically. The diagram is very similar to that found in the so-called parametric instability.
文摘Magnetotactic bacteria are a diverse group of motile prokaryotes that are ubiquitous in aquatic habitats and cosmopolitan in distribution. In this study, we collected magnetotactic bacteria from the Mediterranean Sea. A remarkable diversity of morphotypes was observed, including multicellular types that seemed to differ from those previously found in North and South America. Another interesting organism was one with magnetosomes arranged in a six-stranded bundle which occupied one third of the cell width. The magnetosome bundle was evident even under optic microscopy. These cells were connected together and swam as a linear entire unit. Magnetosomes did not always align up to form a straight linear chain. A chain composed of rectangle magnetosomes bent at a posi- tion with an oval crystal. High resolution transmission electron microscopy analysis of the crystal at the pivotal position suggested uncompleted formation of the crystal. This is the first report of Mediterranean magnetotactic bacteria, which should be useful for studies of biogeochemical cycling and geohistory of the Mediterranean Sea.
文摘Gold, nickel and copper are usually used in connector of the smart card. Since Au is expensive and Ni is an allergenic material, simulated (CES) and bibliographical work is carried out in order to replace the Au and Ni layer in smart card connectors without sacrificing reliability. During the work, mechanical and electrical properties, corrosion resistance, cost, toxicity and process compatibility of the samples have been taken into consideration. Cu alloying with Zn or Sn, Cr and stainless steel were selected for electrodeposition process. Secondly, carbides (WC, TiC, ZrC), Ti, TiN, borides (TiB2) and silicide (MoSi2) are considered as a vapour deposited materials and some Cu alloying with Al, N or Mg also considered via ion implantation processes. But, vapour deposition and implantation are high energy processes compared to the electrodeposition process, which is expensive. Therefore, electrodeposited materials such as, Cu alloys (Brass or bronze), Cr and stainless steel could be considered as promising candidate to replace the Au and Ni layer in smart card connectors.
基金Agence Nationale de la Recherche (ANR-16-CE24-0014-01)Okinawa Institute of Science and Technology Graduate University+2 种基金Baden-Württemberg Stiftung (Operial)Bundesministerium für Bildung und Forschung (Printoptics)European Research Council (POC3DPrinted Optics)。
文摘NaYF_(4):Eu nanorods with high aspect ratios are elaborated and optically trapped using dual fiber optical tweezers in a counterpropagating geometry. High trapping efficiency is observed using converging beams, emitted from diffractive Fresnel lenses directly 3D printed onto cleaved fiber facets. Stable nanorod trapping and alignment are reported for a fiber-to-fiber distance of 200 μm and light powers down to 10 m W. Trapping of nanorod clusters containing one to three nanorods and the coupling of nanorod motion in both axial and transverse directions are considered and discussed. The europium emission is studied by polarization-resolved spectroscopy with particular emphasis on the magnetic and electric dipole transitions. The respective σ and π orientations of the different emission lines are determined. The angles with respect to the nanorod axes of the corresponding magnetic and electric dipoles are calculated. Mono-exponential emission decay with decay time of 4–5 ms is reported. It is shown that the nanorod orientation can be determined by purely spectroscopic means.
基金We acknowledge Institut Laue-Langevin and Spanish initiatives on Neutron Scattering(ILL-SpINS)for beamtime at instrum ent D2B and G.Cuellofor assistance during data acquisition(10.5291/ILL-DATA.5-21-1114).We thank M.C.Capel for the TEM images and TEM-EDS analysis acquisition at Instituto de Catalisis y Petroleoquimica(CSIC).Funding:Work at Instituto de Ciencia de Materiales de Madrid-Consejo Superior de Instigaciones Cientfficas(CSIC)has been supported by the Spanish Research Agency(Agenda Estatal de Investigacion,AEI),Projects MAT2016-78465-R,CTQ2017-87262-R.This work was supported by the EU(ERC CoG HyMAP 648319)and Spanish MINECO(ENE2016-79608-C2-1-R).Authors also wish to thank to“Com unidad de Madrid”and European Structural Funds for their financial support to FotoArt-CM project(S2018/NMT-4367).F.G.acknowledges financial support from MINECO Ramon y Cajal program(RyC-2015-18384).
文摘The precise control on the combination of multiple metal atoms in the structure of metal-organic frameworks(MOFs)endowed by reticular chemistry,allows the obtaining of materials with compositions that are programmed for achieving enhanced reactivity.The present work illustrates how through the transformation of MOFs with desired arrangements of metal cations,multi-metal spinel oxides with precise compositions can be obtained,and used as catalyst precursor for the reverse water-gas shift reaction.The differences in the spinel initial composition and structure,determined by neutron powder diffraction,influence the overall catalytic activity with changes in the process of in s itu formation of active,metal-oxide supported metal nanoparticles,which have been monitored and characterized with in situ X-ray diffraction and photoelectron spectroscopy studies.
文摘This paper proposes a method for optimal placement of synchronized PMUs (phasor measurement units) in electrical power systems using a MCGA (modified canonical genetic algorithm), which the goal is to determine the minimum number of PMUs, as well as the optimal location of these units to ensure the complete topological observability of the system. In case of more than one solution, a strategy of analysis of the design matrix rank is applied to determine the solution with the lower number of critical measurements. In the proposed method of placement, modifications are made in the crossover and mutation genetic operators, as well as in the formation of the subpopulation, and are considered restrictive hypotheses in the search space to improve the performance in solving the optimization problem. Simulations are performed using the IEEE 14-bus, IEEE 30-bus and New England 39-bus test systems. The proposed method is applied on the IEEE 118-bus test system considering the presence of observable zones formed by conventional measurements.
文摘The paper studies specific pumping characteristics of the annular linear pumps with travelling field(ALIP)for liquid sodium.This research represents a preliminary step in the study and development of very large electromagnetic pumps able to provide high flow rates.Since in such cases the magnetic Reynolds number are quite large,it is necessary to take into account the full magnetohydrodynamic interaction between the electromagnetic field and the liquid metal flow inside the pumping channel.The case where the velocity field is uniform in the channel cross section is firstly considered. Then,the coupling between the electromagnetic aspects with the hydrodynamic ones in a 2D axisyrnmetric fmite element model is studied,in order to compare the magnetic convection and the magnetic diffusion.
基金supported by Techtera,the competitiveness cluster for technical and functional textiles based on the Rhne-Alpes Region in Francethe French government(DGIS)
文摘The antibacterial finishing of cotton-based fabrics has been achieved from quaternary ammonium-based composite particles. This functionalization is based on the simple dilution of a quaternary ammonium cation (QAC) hybrid alkoxide within a sol-gel derived crystalline suspension (CS) of TiO2 in liquid solution. This protocol yields the preparation of QAC-Ti02 (QT) composite sols by using a same CS over a long period of time, and enables an easy regeneration of derived QT sols after quite long aging periods. Composite sols can then be impregnated on various kinds of substrates, including textile fabrics. Fourier transform infrared spectroscopy studies, as well as optical and scanning electron microscopy observations, have been used to investigate chemical and morphological features arising from QT particles. Antibacterial tests have then been performed on so-finished textiles and are discussed in relation to chemical and morphological features. It is shown that this sol-gel route flexibly yields a similarly strong antibacterial activity on cotton-based fabrics against both Gram-negative and Gram-positive bacteria, Le. tested fabrics exhibit an antibacterial activity (a(~cording to the ISO 20743-2005 standard) ranging between 7.5 and 7.9 against both kinds of bacteria tested here. Finishing treatments also allow preserving the hand feeling and visual aspect of the textiles and promote a rather good attachment of impregnated particles on the surface of textile fibers.
文摘The self-consistent ab initio calculations based on the density functional theory approach using the full potential linear augmented plane wave method are performed to investigate both the electronic and magnetic properties of the NiFe compound. Polarized spin within the framework of the ferromagnetic state between magnetic ions is considered. Also, magnetic moments considered to lie along (001) axes are computed. The Monte Carlo simulation is used to study the magnetic properties of NiFe. The transition temperature To, hysteresis loop, coercive field and remanent magnetization of the NiFe compound are obtained using the Monte Carlo simulation.
文摘The engineering problems today become more and more complex particularly in the area of new product development. It requires the multi-disciplinary design method to solve complex problems. This paper presents an integrated design system for solving complexity during multi-disciplinary design. Complexity could be solved if the design problems, given by any individuals who are concerned, are structured. The design system uses the multi-viewpoint concept to allow experts to share their information and knowledge in common views. Knowledge modules are used to store semantics from the experts of different disciplines. Then the system agent acts as an internal designer to help support the individuals to translate any semantics provided from one discipline and then propagate to other related disciplines. With these tools, the integrated design system can structure and solve the complexity of design problems.
基金Item Sponsored by National Natural Science Foundation of China (No.59874133) Creation Foundation of Shanghai Educational Committee (No.10YZ16)
文摘The parametric instability behavior of a liquid mercury sessile drop under high frequency Amplitude-Modulate Magnetic Field(AMMF),i.e.a high frequency magnetic field(carder wave)modulated by a low frequency sine wave(modulate wave),is investigated experimentally.The free surface contour of the mercury drop is observed by a CCD camera while varying the frequency and amplitude of the high frequency AMMF.At a given frequency and amplitude,the edge deformations with an azimuthal wave numbers(modes n=3,4,5,6)were excited.