In this paper,I present B-DRIVE—a blockchain-based distributed IoT(Internet of Things)network for smart urban transportation.The network is designed to connect a large fleet of IoT devices,installed on various vehicl...In this paper,I present B-DRIVE—a blockchain-based distributed IoT(Internet of Things)network for smart urban transportation.The network is designed to connect a large fleet of IoT devices,installed on various vehicles and roadside infrastructures,to distributed data storage centers,called as Full-Nodes,to log and disseminate sensor generated data.It connects devices from around the city to multiple Full-Nodes to log timestamped data into the blockchain.These sensors vary from GPS(Global Positioning System),air quality meter,gyrometer to speed cameras in order to facilitate efficient urban mobility.The three identified hardware layers that comprise the network are the IoT layer,Storage layer,and User layer.They consist of Moving/Static-Nodes,Full-Nodes,and Smart devices,respectively.The Moving/Static-Nodes are primarily made up of moving vehicles and road-side infrastructures,respectively,thus acting as various data sources.Whereas,Full-Nodes and Smart devices are institutions and mobile phones,acting as data handler/disseminator and navigator/data visualizer,respectively.The data,or data blocks,received by Full-Nodes get appended into Full and Running-Blockchain,meant for specific purposes.The network is designed to be free from any block mining activity.It provides open access to anonymous sensor data to end-users,especially scientists,policy-makers and entrepreneurs,to develop innovative urban transportation solutions.It is believed that a system like B-DRIVE,along with existing VANETs(Vehicular Ad-hoc NETworks),is capable of answering some of the current urban transportation issues around traffic congestion,navigation,and vehicle parking.Other applications of blockchain data could vary from user activity mapping to VGI(volunteered geographic information)data quality assessment.Two identified limitations of the presented architecture are the low processing power of current IoT devices and the lack of urban IoT infrastructure.展开更多
文摘In this paper,I present B-DRIVE—a blockchain-based distributed IoT(Internet of Things)network for smart urban transportation.The network is designed to connect a large fleet of IoT devices,installed on various vehicles and roadside infrastructures,to distributed data storage centers,called as Full-Nodes,to log and disseminate sensor generated data.It connects devices from around the city to multiple Full-Nodes to log timestamped data into the blockchain.These sensors vary from GPS(Global Positioning System),air quality meter,gyrometer to speed cameras in order to facilitate efficient urban mobility.The three identified hardware layers that comprise the network are the IoT layer,Storage layer,and User layer.They consist of Moving/Static-Nodes,Full-Nodes,and Smart devices,respectively.The Moving/Static-Nodes are primarily made up of moving vehicles and road-side infrastructures,respectively,thus acting as various data sources.Whereas,Full-Nodes and Smart devices are institutions and mobile phones,acting as data handler/disseminator and navigator/data visualizer,respectively.The data,or data blocks,received by Full-Nodes get appended into Full and Running-Blockchain,meant for specific purposes.The network is designed to be free from any block mining activity.It provides open access to anonymous sensor data to end-users,especially scientists,policy-makers and entrepreneurs,to develop innovative urban transportation solutions.It is believed that a system like B-DRIVE,along with existing VANETs(Vehicular Ad-hoc NETworks),is capable of answering some of the current urban transportation issues around traffic congestion,navigation,and vehicle parking.Other applications of blockchain data could vary from user activity mapping to VGI(volunteered geographic information)data quality assessment.Two identified limitations of the presented architecture are the low processing power of current IoT devices and the lack of urban IoT infrastructure.