Future climate change will affect the environmental fate of hydrophobic organic contaminants(HOCs)and associated human health risks,yet the extent of these effects remains unknown.Here,we couple a high-resolution envi...Future climate change will affect the environmental fate of hydrophobic organic contaminants(HOCs)and associated human health risks,yet the extent of these effects remains unknown.Here,we couple a high-resolution environmental multimedia model with a bioaccumulation model to study the multimedia distribution of 16 priority polycyclic aromatic hydrocarbons(PAHs),a group of HOCs,and assess future PAH-related human health risks under varying climate change scenarios over China at a continental scale.After removing the effects of PAH emission changes,we find that the total PAH concentrations would decrease in the air,freshwater,sediment,soil,and organisms,while the high-molecular-weight PAH would increase in the air with climate warming from 1.5°C to 4°C.Consequently,the multi-pathway exposure human health risks predominately influenced by dietary ingestion are expected to decrease by 1.7%–20.5%,while the respiratory risks are projected to rise by 0.2%–5.8%in the future.However,the persistently high multi-pathway human health risks underscore the need for reducing future PAH emissions by 69%compared with 2009 levels in China.Our study demonstrates the urgency of limiting PAH emissions under future climate change for public health and highlights the importance of including the contribution of dietary ingestion in human health risk assessment.展开更多
As an outcome of globalization and liberalization of economic policies, exploration for and mining of minerals have become one of the recent lucrative trades in India. Due to stringent environment legislations, reclam...As an outcome of globalization and liberalization of economic policies, exploration for and mining of minerals have become one of the recent lucrative trades in India. Due to stringent environment legislations, reclamation and reforestation of the mined out sites have become obligatory. Information on distribution of nutrients before and after mining provides valuable insights while developing and executing the strategy for reclamation and revegetation of the mined out sites. Successful mine reclamation plan chiefly requires information on the soil characteristics in the area during its natural state. With this aim, investigations into spatial and temporal variations in soil nutrients and other physico-chemical parameters among three proposed bauxite mine locations near Araku valley, India were conducted. Soil samples were collected every three months for two years. At each location, samples from three sites in triplicates from four successive layers (0 - 5 cm, 5 - 10 cm, 10 - 15 cm and 15 - 20 cm depth) were collected. Concentrations of Total Organic Carbon (TOC), Total Nitrogen (TN), Total Available Phosphorous (TAP), Total Available Sulphur (TAS), C:N, C:P, and C:S decreased along the soil layers, while N:P increased. All the parameters studied varied significantly among months (GLM-ANOVA, P 0.05). Principal Component Analysis (PCA) done on the soil physico-chemical dataset showed first 5 components (Eigen Value > 1) explaining 87.3% of the total variance. Of these, the first component accounted for 21.0% and the second for 20.1% of the total variance. The principal components represented C:N/Soil N, C:P/Soil P/N:P, EC, Soil S/C:S and Soil C axes, respectively.展开更多
When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the mult...When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project(PMIP) models. The reconstructed winter(summer) surface air temperature at 6 kyr before present was 0.85 oC(0.21 oC) lower(higher) than the present day over Asia, 60oE-150oE, 10oN-60oN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1larger than present day, respectively. The Group B climate, which means the dry climates based on K?ppen climate classification, at 6 kyr before present decreased 17% compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.展开更多
Rainfall trend analysis has asupreme role for forecasting the rain events,which is very vital for tropics where the fluctuation in occurrence of rainfall is widespread.The local level rainfall trend analysis on the ot...Rainfall trend analysis has asupreme role for forecasting the rain events,which is very vital for tropics where the fluctuation in occurrence of rainfall is widespread.The local level rainfall trend analysis on the other side provides valuable information to cope up with the vehemence of global climate changes.The present study analyses the trend in the rainfall and number of rain days in a tropical town ship,Pattambi,located in the Bharathapuzha River basin of Kerala state of India.We used Man-Kendall rank correlation statistics to see the variations展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0605001)the National Natural Science Foundation of China(52039001,92047303 and 41977359)
文摘Future climate change will affect the environmental fate of hydrophobic organic contaminants(HOCs)and associated human health risks,yet the extent of these effects remains unknown.Here,we couple a high-resolution environmental multimedia model with a bioaccumulation model to study the multimedia distribution of 16 priority polycyclic aromatic hydrocarbons(PAHs),a group of HOCs,and assess future PAH-related human health risks under varying climate change scenarios over China at a continental scale.After removing the effects of PAH emission changes,we find that the total PAH concentrations would decrease in the air,freshwater,sediment,soil,and organisms,while the high-molecular-weight PAH would increase in the air with climate warming from 1.5°C to 4°C.Consequently,the multi-pathway exposure human health risks predominately influenced by dietary ingestion are expected to decrease by 1.7%–20.5%,while the respiratory risks are projected to rise by 0.2%–5.8%in the future.However,the persistently high multi-pathway human health risks underscore the need for reducing future PAH emissions by 69%compared with 2009 levels in China.Our study demonstrates the urgency of limiting PAH emissions under future climate change for public health and highlights the importance of including the contribution of dietary ingestion in human health risk assessment.
文摘As an outcome of globalization and liberalization of economic policies, exploration for and mining of minerals have become one of the recent lucrative trades in India. Due to stringent environment legislations, reclamation and reforestation of the mined out sites have become obligatory. Information on distribution of nutrients before and after mining provides valuable insights while developing and executing the strategy for reclamation and revegetation of the mined out sites. Successful mine reclamation plan chiefly requires information on the soil characteristics in the area during its natural state. With this aim, investigations into spatial and temporal variations in soil nutrients and other physico-chemical parameters among three proposed bauxite mine locations near Araku valley, India were conducted. Soil samples were collected every three months for two years. At each location, samples from three sites in triplicates from four successive layers (0 - 5 cm, 5 - 10 cm, 10 - 15 cm and 15 - 20 cm depth) were collected. Concentrations of Total Organic Carbon (TOC), Total Nitrogen (TN), Total Available Phosphorous (TAP), Total Available Sulphur (TAS), C:N, C:P, and C:S decreased along the soil layers, while N:P increased. All the parameters studied varied significantly among months (GLM-ANOVA, P 0.05). Principal Component Analysis (PCA) done on the soil physico-chemical dataset showed first 5 components (Eigen Value > 1) explaining 87.3% of the total variance. Of these, the first component accounted for 21.0% and the second for 20.1% of the total variance. The principal components represented C:N/Soil N, C:P/Soil P/N:P, EC, Soil S/C:S and Soil C axes, respectively.
基金funded by the National Institute of Fisheries Science of Korea (No. RP-2016-ME-036)
文摘When considering potential global warming projections, it is useful to understand the impact of each climate condition at 6 kyr before present. Asian paleoclimate was simulated by performing an integration of the multi-model ensemble with the paleoclimate modeling intercomparison project(PMIP) models. The reconstructed winter(summer) surface air temperature at 6 kyr before present was 0.85 oC(0.21 oC) lower(higher) than the present day over Asia, 60oE-150oE, 10oN-60oN. The seasonal variation and heating differences of land and ocean in summer at 6 kyr before present might be much larger than present day. The winter and summer precipitation of 6 kyr before present were 0.067 and 0.017 mm·day-1larger than present day, respectively. The Group B climate, which means the dry climates based on K?ppen climate classification, at 6 kyr before present decreased 17% compared to present day, but the Group D which means the continental and microthermal climates at 6 kyr before present increased over 7%. Comparison between the results from the model simulation and published paleo-proxy record agrees within the limited sparse paleo-proxy record data.
文摘Rainfall trend analysis has asupreme role for forecasting the rain events,which is very vital for tropics where the fluctuation in occurrence of rainfall is widespread.The local level rainfall trend analysis on the other side provides valuable information to cope up with the vehemence of global climate changes.The present study analyses the trend in the rainfall and number of rain days in a tropical town ship,Pattambi,located in the Bharathapuzha River basin of Kerala state of India.We used Man-Kendall rank correlation statistics to see the variations