Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the...Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.展开更多
Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-gly...Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-glycolic acid)(PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility,degradability,mechanical properties,and capabilities to promote bone regeneration.In this article,we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances,elaborate on their applications for bone regeneration with or without bioactive factors,and prospect the challenges and opportunities in clinical bone regeneration.展开更多
In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesio...In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesion,and low mechanical properties.Herein,a mussel-inspired supramolecular interaction-cross-linked hydrogel with robust mechanical property(308.47±29.20 kPa)and excellent hemostatic efficiency(96.5%±2.1%)was constructed as a hemostatic sealant.Typically,we combined chitosan(CS)with silk fibroin(SF)by cross-linking them through tannic acid(TA)to maintain the structural stability of the hydrogel,especially for wet tissue adhesion ability(shear adhesive strength=29.66±0.36 kPa).Compared with other materials reported previously,the obtained CS/TA/SF hydrogel yielded a lower amount of blood loss and shorter time to hemostasis in various arterial and visceral bleeding models,which could be ascribed to the synergistic effect of wound closure under wet state as well as intrinsic hemostatic activity of CS.As a superior hemostatic sealant,the unique hydrogel proposed in this work can be exploited to offer significant advantages in the acute wound and massive hemorrhage with the restrictive access of therapeutic moieties.展开更多
Osteonecrosis,which is typically induced by trauma,glucocorticoid abuse,or alcoholism,is one of the most severe diseases in clinical orthopedics.Osteonecrosis often leads to joint destruction,and arthroplasty is event...Osteonecrosis,which is typically induced by trauma,glucocorticoid abuse,or alcoholism,is one of the most severe diseases in clinical orthopedics.Osteonecrosis often leads to joint destruction,and arthroplasty is eventually required.Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy.Bone tissue engineering based on engineered three-dimensional(3D)scaffolds with appropriate architecture and osteoconductive activity,alone or functionalized with bioactive factors,have been developed to enhance bone regeneration in osteonecrosis.In this review,we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis,including biocompatibility,degradability,porosity,and mechanical performance.In addition,we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice.展开更多
Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating w...Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.展开更多
Primary bile acids were reported to augment secretion of chemokine(C-X-C motif)ligand16(CXCL16)from liver sinusoidal endothelial cells(LSECs)and trigger natural killer T(NKT)cellbased immunotherapy for liver cancer.Ho...Primary bile acids were reported to augment secretion of chemokine(C-X-C motif)ligand16(CXCL16)from liver sinusoidal endothelial cells(LSECs)and trigger natural killer T(NKT)cellbased immunotherapy for liver cancer.However,abundant expression of receptors for primary bile acids across the gastrointestinal tract overwhelms the possibility of using agonists against these receptors for liver cancer control.Taking advantage of the intrinsic property of LSECs in capturing circulating nanoparticles in the circulation,we proposed a strategy using nanoemulsion-loaded obeticholic acid(OCA),a clinically approved selective farnesoid X receptor(FXR)agonist,for precisely manipulating LSECs for triggering NKT cell-mediated liver cancer immunotherapy.The OCA-nanoemulsion(OCA-NE)was prepared via ultrasonic emulsification method,with a diameter of 184 nm and good stability.In vivo biodistribution studies confirmed that the injected OCA-NE mainly accumulated in the liver and especially in LSECs and Kupffer cells.As a result,OCA-NE treatment significantly suppressed hepatic tumor growth in a murine orthotopic H22 tumor model,which performed much better than oral medication of free OCA.Immunologic analysis revealed that the OCA-NE resulted in augmented secretion of CXCL16 and IFN-g,as well as increased NKT cell populations inside the tumor.Overall,our research provides a new evidence for the antitumor effect of receptors for primary bile acids,and should inspire using nanotechnology for precisely manipulating LSECs for liver cancer therapy.展开更多
A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modif...A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.展开更多
Lithium iron phosphate (LiFePO4) doped with magnesium was hydrothermally synthesized from commercial LiOH, FeSO4, H3PO4 and MgSO4 with glucose as carbon precursor in aqueous solution. The samples were characterized ...Lithium iron phosphate (LiFePO4) doped with magnesium was hydrothermally synthesized from commercial LiOH, FeSO4, H3PO4 and MgSO4 with glucose as carbon precursor in aqueous solution. The samples were characterized by X-ray powder diffraction, scanning electron microscopy and constant charge-discharge cycling. The results show that the synthesized powders have been in situ coated with carbon precursor produced from caramel reaction of glucose. At ambient temperature (28±2℃), the electrochemical performances of LiFePO4 prepared exhibit the high discharge capacity of 135 mAh g^-1 at 5C and good capacity retention of 98% over 90 cycles. The excellent electrochemical performances should be correlated with the intimate contact between carbon and LiFePO4 primary and secondary particles, resulting from the in situ formation of carbon precursor/carbon, leading to the increase in conductivity of LiFePO4.展开更多
A kind of new long life aluminum air batteries with open configuration was developed, using aluminum alloy doped with Ga, In, Sn, Bi, Pb and Mn as anode, NaCl solution as electrolyte and air electrode as cathode. The ...A kind of new long life aluminum air batteries with open configuration was developed, using aluminum alloy doped with Ga, In, Sn, Bi, Pb and Mn as anode, NaCl solution as electrolyte and air electrode as cathode. The polarization curves of aluminum electrode and air electrode were tested. And the cell′s performance was tested to calculate the utilization of aluminum electrode and the energy density. It is shown that, in the 3.5% NaCl solution, the cell can discharge at 0.29 A for 140 h with the working voltage keeping over 1.1 V. The utilization ratio of aluminum anode is over 44%, and the life of battery is longer than 2400 h.展开更多
Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals...Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals in situ in the melt blending process.Differential seanning calorimetry analysis revealed that only sc-PLA,no homo-crystallization of PLLA or PDLA,formed in the PPC matrix as the sc-PLA con tent was more than 10 wt%.Very in triguingly,scan ning electronic microscopy observati on showed that sc-PLA was evenly dispersed in the PPC phase as spherical particles and the sizes of sc-PLA particles did not obviously increase with in creasing sc-PLA con tent.As a con seque nee,the rheological properties of PPC were greatly improved by incorporation of sc-PLA.When the sc-PLA con tent was 20 wt%,a percolati on n etwork structure was formed,and the blends showed solid-like behavior.The sc-PLA particles could reinforce the PPC matrix,especially at a temperature above the glass transition temperature of PPC.Moreover,the Vicat softening temperature of PPC/sc-PLA blends could be increased compared with that of neat PPC.展开更多
RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and p...RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging.Recently,more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating.Due to the flexibility and deformability of nucleic acids,the nanoassemblies could be fabricated with different shapes and structures.With hybridization,nucleic acid nanoassemblies,including DNA and RNA nanostructures,can be applied to enhance RNA therapeutics and diagnosis.This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.展开更多
An essential concept of cancer immunotherapy is that immunogenic cell death(ICD),characterized by the release of tumor-associated antigens(TAAs)and tumor-specific antigens(TSAs)like neoantigens,danger-associated molec...An essential concept of cancer immunotherapy is that immunogenic cell death(ICD),characterized by the release of tumor-associated antigens(TAAs)and tumor-specific antigens(TSAs)like neoantigens,danger-associated molecular patterns(DAMPs),and pro-inflammatory cytokines,facilitates the presentation of TAAs and TSAs to adaptive immune cells,eliciting an emerging or reinstating a pre-existing anti-cancer immune response.展开更多
Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film tech...Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.展开更多
Intravesical chemotherapy has been recommended after the gold standard of transurethral resection of the bladder tumor to prevent bladder cancer(BC)from local recurrence in the clinic.However,due to rapid urine excret...Intravesical chemotherapy has been recommended after the gold standard of transurethral resection of the bladder tumor to prevent bladder cancer(BC)from local recurrence in the clinic.However,due to rapid urine excretion and barrier protection of the bladder wall,the clinical performances of chemotherapeutic drugs are severely compromised.In the present work,a smart positively charged disulfide-crosslinked nanogel of oligoarginine-poly(ethylene glycol)-poly(L-phenylalanine-co-L-cystine)(R_(9)-PEG-P(LP-co-LC))was prepared to prolong the retention period and enhance the penetration capability of chemotherapeutic agent toward the bladder wall.PEG significantly improved the aqueous dispersibility of the 10-hydroxycamptothecin(HCPT)-loaded R_(9)-PEG-P(LP-co-LC)(i.e.,R_(9)NG/HCPT)and enhanced the mucoadhesive capability by the nonspecific interaction between PEG chain and the bladder mucosa accompanied with the electrostatic interaction between the cationic R_(9)and negatively charged bladder mucosa.Besides,R_(9),as a cell-penetrating peptide,efficiently penetrated through the cell membrane and delivered carried cargo.The disulfide bond endowed the selective release behavior of HCPT triggered by the intracellular reductive microenvironment.As an advanced chemotherapeutic nanoformulation,the smart R_(9)NG/HCPT demonstrated superior cytotoxicity against human BC 5637 cells in vitro and remarkably enhanced tumor suppression activity toward orthotopic BC models of mouse and rat in vivo,indicating its great potential in the clinical intravesical BC chemotherapy.展开更多
Melanoma has been a serious threat to the human health;however,effective therapeutic methods of this cancer are still limited.Combined local therapy is a crucial approach for achieving a superior anti-tumor efficacy.I...Melanoma has been a serious threat to the human health;however,effective therapeutic methods of this cancer are still limited.Combined local therapy is a crucial approach for achieving a superior anti-tumor efficacy.In this paper,a chemo-immunotherapy system of DOX,IL-2 and IFN-g based on poly(g-ethyl-Lglutamate)-poly(ethylene glycol)-poly(g-ethyl-L-glutamate)(PELG-PEG-PELG)hydrogel was developed for local treatment of melanoma xenograft.The drug release process of this system exhibited a short term of burst release(the first 3 days),followed by a long-term sustained release(the following 26 days).The hydrogel degraded completely within 3 weeks without obvious inflammatory responses in the subcutaneous layer of rats,showing a good biodegradability and biocompatibility.The DOX/IL-2/IFN-g co-loaded hydrogel also showed enhanced anti-tumor effect against B16F10 cells in vitro,through increasing the ratio of cell apoptosis and G2/S phage cycle arrest.Moreover,the combined strategy presented improved therapy efficacy against B16F10 melanoma xenograft without obvious systemic side effects in a nude mice model,which was likely related to both the enhanced tumor cell apoptosis and the increased proliferation of the CD3t/CD4t T-lymphocytes and CD3t/CD8t T-lymphocytes.Overall,the strategy of localized co-delivery of DOX/IL-2/IFN-g using the polypeptide hydrogel provided a promising approach for efficient melanoma therapy.展开更多
The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed.Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues.For osteochondral recon...The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed.Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues.For osteochondral reconstruction,one intact scaffold should be considered to support the regeneration of both cartilage and subchondral bone.Therefore,the biphasic scaffolds with the mimic structures of osteochondral tissues have been developed to close this chasm.A variety of biomimetic bilayer scaffolds fabricated from natural or synthetic polymers,or the ones loading with growth factors,cells,or both of them make great progresses in osteochondral defect repair.In this review,the preparation and in vitro and/or in vivo verification of bioinspired biphasic scaffolds are summarized and discussed,as well as the prospect is predicted.展开更多
Tumor-promoting inflammation is accompanied by cancer initiation,progression,and metastasis.Cyclooxygenase-2(COX-2)and its downstream product,prostaglandin E2(PGE2),play critical roles in tumor-promoting inflammation....Tumor-promoting inflammation is accompanied by cancer initiation,progression,and metastasis.Cyclooxygenase-2(COX-2)and its downstream product,prostaglandin E2(PGE2),play critical roles in tumor-promoting inflammation.Several studies have revealed the potential of COX-2 inhibition in improving cancer response to chemotherapy,as well as immunotherapy.Aspirin,a nonsteroidal anti-inflammatory drug,has been reported as a COX-2 inhibitor.However,as a small molecule drug with a carboxyl group,there is still the lack of effective methods of preparing polymer–aspirin conjugates with tumor stimuli-responsive release properties.Herein,we synthesized a reactive oxygen species(ROS)-responsive aspirin polymeric prodrug(P3C-Asp)via Passerini three-component reaction between aspirin,4-formylbenzeneboronic acid pinacol ester,and 5-isocyanopent-1-yne,followed by copper(I)-catalyzed alkyne-azide cycloaddition“click”reaction of the aspirin prodrug with dextran(DEX).The P3C-Asp could release aspirin and salicylic acid in response to tumor-specific stimuli.In the murine colorectal cancer model,P3C-Asp suppressed tumor growth effectively without significant side effects and eradicated tumors when combined with the immune checkpoint inhibitor,anti-PD-1 antibody(aPD-1).Further analysis revealed that the suppression was attributable to changes in the immune microenvironment,including reduced PGE2 content,as well as increased infiltration of CD8+T cells and M1 macrophages.The results mentioned above proved that targeting COX-2 pathway with a proper polymeric prodrug might be a useful strategy for cancer immunotherapy.展开更多
A simple calcination method was employed to prepare a Z-scheme N-doped K4Nb6O17/g-C3N4(KCN)heterojunction photocatalyst,in which the electronic structure of K4Nb6O17 was regulated by N-doping,and g-C3N4 was formed bot...A simple calcination method was employed to prepare a Z-scheme N-doped K4Nb6O17/g-C3N4(KCN)heterojunction photocatalyst,in which the electronic structure of K4Nb6O17 was regulated by N-doping,and g-C3N4 was formed both on the surface and within the interlayer spaces of K4Nb6O17.The KCN composite showed profoundly improved photocatalytic activity for both H2 generation and RhB degradation compared to its counterparts.This improved performance was attributed to the synergistic effects of N-doping,which broadened its light harvesting ability,and heterojunction formation,which increased the charge separation rate.The relatively low BET specific surface area of the KCN composite had little effect on its photocatalytic activity.Based on ESR spectroscopy studies,•O2^−,•OH,and h^+are the main active species in the photocatalytic degradation of RhB.Thus,it is reasonable to propose a Z-scheme photocatalytic mechanism over the KCN composite,which exhibits the dual advantages of efficient charge separation and high redox ability.Our work provides a simple approach for constructing large-scale Z-scheme heterojunction photocatalysts with high photocatalytic performance.展开更多
Pristine LiNi_(0.5)Mn_(1.5)O_4 and cerium doped LiCe_xNi_(0.5–x)Mn_(1.5)O_4(x=0.005, 0.01, 0.02) cathode materials were synthesized by solid-state method. The effect of Ce doping content on structure and el...Pristine LiNi_(0.5)Mn_(1.5)O_4 and cerium doped LiCe_xNi_(0.5–x)Mn_(1.5)O_4(x=0.005, 0.01, 0.02) cathode materials were synthesized by solid-state method. The effect of Ce doping content on structure and electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode material was systematically investigated. The samples were characterized by X-ray diffraction(XRD), Fourier transformation infrared spectrometer(FT-IR), scanning electron microscopy(SEM), electrochemical impedance spectroscopy(EIS), cyclic voltammetry(CV) and constant-current charge/discharge tests. The results showed that Ce doping did not change the cubic spinel structure with Fd3m space group, but effectively restrained the formation of Li_xNi_(1–x)O impurity phase. Appropriate Ce doping(x=0.005) could decrease the extent of confusion between lithium ions and transition metal ions, increase the lattice parameter and Ni/Mn disordering degree(Mn^(3+) content). The synergic effects of the above factors led to the optimal electrochemical performance of LiCe_(0.005)Ni_(0.495)Mn_(1.5)O_4 sample. The discharge capacity at 10 C rate could reach 115.4 mAh/g, 94.82% of that at 0.2C rate, and the capacity retention rate after 100 cycles at 1C rate could reach 94.51%. However, heavier Ce doping had an adverse effect on the electrochemical properties, which might be due to the lower disordering degree and existence of more CeO_2 secondary phase.展开更多
基金supported by the National Natural Science Foundation of China (11621505, 11435002, 31671016)
文摘Precise nanomedicine has been extensively explored for efficient cancer imaging and targeted cancer therapy, as evidenced by a few breakthroughs in their preclinical and clinical explorations. Here, we demonstrate the recent advances of intelligent cancer nanomedicine, and discuss the comprehensive understanding of their structure-function relationship for smart and efficient cancer nanomedicine including various imaging and therapeutic applications, as well as nanotoxicity. In particular, a few emerging strategies that have advanced cancer nanomedicine are also highlighted as the emerging focus such as tumor imprisonment, supramolecular chemotherapy, and DNA nanorobot. The challenge and outlook of some scientific and engineering issues are also discussed in future development. We wish to highlight these new progress of precise nanomedicine with the ultimate goal to inspire more successful explorations of intelligent nanoparticles for future clinical translations.
基金This study was financially supported by the National Natural Science Foundation of China(Grant Nos.51973216,51873207,51803006,and 51833010)the Science and Technology Development Program of Jilin Province(Grant No.20200404182YY)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2019005)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(Grant No.2020-KF-5).
文摘Research and development of the ideal artificial bone-substitute materials to replace autologous and allogeneic bones for repairing bone defects is still a challenge in clinical orthopedics.Recently,poly(lactic-co-glycolic acid)(PLGA)-based artificial bone-substitute materials are attracting increasing attention as the benefit of their suitable biocompatibility,degradability,mechanical properties,and capabilities to promote bone regeneration.In this article,we comprehensively review the artificial bone-substitute materials made from PLGA or the composites of PLGA and other organic and inorganic substances,elaborate on their applications for bone regeneration with or without bioactive factors,and prospect the challenges and opportunities in clinical bone regeneration.
基金This work was financially supported by the National Natural Science Foundation of China(Grant No 51903050)the Natural Science Foundation of Fujian Province(Grant No.2019J01258)+2 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University,Grant No.sklpme2019-4-34)the Key Program of Qingyuan Innovation Laboratory(Grant No.00221002)the Fuzhou University Testing Fund of Precious Apparatus(Grant No.2021T025).
文摘In recent years,the developed hemostatic technologies are still difficult to be applied to the hemostasis of massive arterial and visceral hemorrhage,owing to their weak hemostatic function,inferior wet tissue adhesion,and low mechanical properties.Herein,a mussel-inspired supramolecular interaction-cross-linked hydrogel with robust mechanical property(308.47±29.20 kPa)and excellent hemostatic efficiency(96.5%±2.1%)was constructed as a hemostatic sealant.Typically,we combined chitosan(CS)with silk fibroin(SF)by cross-linking them through tannic acid(TA)to maintain the structural stability of the hydrogel,especially for wet tissue adhesion ability(shear adhesive strength=29.66±0.36 kPa).Compared with other materials reported previously,the obtained CS/TA/SF hydrogel yielded a lower amount of blood loss and shorter time to hemostasis in various arterial and visceral bleeding models,which could be ascribed to the synergistic effect of wound closure under wet state as well as intrinsic hemostatic activity of CS.As a superior hemostatic sealant,the unique hydrogel proposed in this work can be exploited to offer significant advantages in the acute wound and massive hemorrhage with the restrictive access of therapeutic moieties.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51973216,51873207,51803006, 51833010)the Science and Technology Development Program of Jilin Province(Grant No.20190201068JC)+3 种基金the Youth Talents Promotion Project of Jilin Province(Grant No.181909)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2019005)the Special Foundation for Provincial Authorities from Finance Department of Jilin Province(Grant No.3D518V313429)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(Grant No.2020-KF-5).
文摘Osteonecrosis,which is typically induced by trauma,glucocorticoid abuse,or alcoholism,is one of the most severe diseases in clinical orthopedics.Osteonecrosis often leads to joint destruction,and arthroplasty is eventually required.Enhancement of bone regeneration is a critical management strategy employed in osteonecrosis therapy.Bone tissue engineering based on engineered three-dimensional(3D)scaffolds with appropriate architecture and osteoconductive activity,alone or functionalized with bioactive factors,have been developed to enhance bone regeneration in osteonecrosis.In this review,we elaborate on the ideal properties of 3D scaffolds for enhanced bone regeneration in osteonecrosis,including biocompatibility,degradability,porosity,and mechanical performance.In addition,we summarize the development of 3D scaffolds alone or functionalized with bioactive factors for accelerating bone regeneration in osteonecrosis and discuss their prospects for translation to clinical practice.
文摘Antibacterial ceramic was prepared by doping enamel slurry with composite phosphate inorganic antibacterial materials containing rare earth (inorganic antibacterial additives), and then the mechanisms for activating water and improving seed germinative property were tested by nuclear magnetic resonance (NMR) and the method of testing oxygen dissolved in activated water. Results show that the half peak width of (()^(17)O-NMR) for tap water activated by the antibacterial ceramic drops from 115.36 to 99.15 Hz, and oxygen concentrations of activated water increase by 20%, germinate rate of horsebean and earthnut seeds increases by 12.5% and 7.5%, respectively. Therefore antibacterial ceramic doped enamel slurry with inorganic antibacterial additives containing rare earth can reduce the volume of clusters of water molecules, improve activation of tap water, and promote plant seeds germinate.
基金financially supported by the National Natural Science Foundation of China(51673189,51973215,51833010and 51520105004)Ministry of Science and Technology of China(Project 2018ZX09711003-012)+1 种基金the Program of Scientific Development of Jilin Province(20170101100JC,20180520207JH,20190103112JH,China)supported by NIH grant CA198999(USA)
文摘Primary bile acids were reported to augment secretion of chemokine(C-X-C motif)ligand16(CXCL16)from liver sinusoidal endothelial cells(LSECs)and trigger natural killer T(NKT)cellbased immunotherapy for liver cancer.However,abundant expression of receptors for primary bile acids across the gastrointestinal tract overwhelms the possibility of using agonists against these receptors for liver cancer control.Taking advantage of the intrinsic property of LSECs in capturing circulating nanoparticles in the circulation,we proposed a strategy using nanoemulsion-loaded obeticholic acid(OCA),a clinically approved selective farnesoid X receptor(FXR)agonist,for precisely manipulating LSECs for triggering NKT cell-mediated liver cancer immunotherapy.The OCA-nanoemulsion(OCA-NE)was prepared via ultrasonic emulsification method,with a diameter of 184 nm and good stability.In vivo biodistribution studies confirmed that the injected OCA-NE mainly accumulated in the liver and especially in LSECs and Kupffer cells.As a result,OCA-NE treatment significantly suppressed hepatic tumor growth in a murine orthotopic H22 tumor model,which performed much better than oral medication of free OCA.Immunologic analysis revealed that the OCA-NE resulted in augmented secretion of CXCL16 and IFN-g,as well as increased NKT cell populations inside the tumor.Overall,our research provides a new evidence for the antitumor effect of receptors for primary bile acids,and should inspire using nanotechnology for precisely manipulating LSECs for liver cancer therapy.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0501402)Science and Technology Services Network Program of Chinese Science Academy(STS Project)(No.KFJSTS-ZDTP-082)Chinese Academy of Sciences(Changchun Branch)(Nos.2020SYHZ0002 and No.2020SYHZ0047)。
文摘A biodegradable blend foaming material of poly(butylene adipate-co-terephthalate)(PBAT)/poly(propylene carbonate)(PPC)was successfully prepared by chemical foaming agent and screw extrusion method.First,PBAT was modified by bis(tert-butyl dioxy isopropyl)benzene(BIBP)for chain extension,and then the extended PBAT(E-PBAT)was foamed with PPC using a twin(single)screw extruder.By analyzing the properties of the blends,we found that Young’s modulus increased from 58.8 MPa of E-PBAT to 244.7 MPa of E-PBAT/PPC 50/50.The viscosity of the polymer has a critical influence on the formation of cells.Compared with neat PBAT(N-PBAT),the viscosity of E-PBAT increased by 3396 Pa·s and E-PBAT/PPC 50/50 increased by 8836 Pa·s.Meanwhile,the dynamic mechanical analysis(DMA)results showed that the storage modulus(E’)at room temperature increased from 538 MPa to 1650 MPa.The various phase morphologies(“sea-island”,“quasi-co-continuous”and“cocontinuous”)and crystallinity of the blends affected the spread velocity of gas and further affected the foaming morphology in E-PBAT/PPC foam.Therefore,through the analysis of phase morphology and foaming mechanism,we concluded that the E-PBAT/PPC 70/30 component has both excellent strength and the best foaming performance.
文摘Lithium iron phosphate (LiFePO4) doped with magnesium was hydrothermally synthesized from commercial LiOH, FeSO4, H3PO4 and MgSO4 with glucose as carbon precursor in aqueous solution. The samples were characterized by X-ray powder diffraction, scanning electron microscopy and constant charge-discharge cycling. The results show that the synthesized powders have been in situ coated with carbon precursor produced from caramel reaction of glucose. At ambient temperature (28±2℃), the electrochemical performances of LiFePO4 prepared exhibit the high discharge capacity of 135 mAh g^-1 at 5C and good capacity retention of 98% over 90 cycles. The excellent electrochemical performances should be correlated with the intimate contact between carbon and LiFePO4 primary and secondary particles, resulting from the in situ formation of carbon precursor/carbon, leading to the increase in conductivity of LiFePO4.
基金This work was financially supported by the Doctor Foundation of Hebei Province (045472226D-1).
文摘A kind of new long life aluminum air batteries with open configuration was developed, using aluminum alloy doped with Ga, In, Sn, Bi, Pb and Mn as anode, NaCl solution as electrolyte and air electrode as cathode. The polarization curves of aluminum electrode and air electrode were tested. And the cell′s performance was tested to calculate the utilization of aluminum electrode and the energy density. It is shown that, in the 3.5% NaCl solution, the cell can discharge at 0.29 A for 140 h with the working voltage keeping over 1.1 V. The utilization ratio of aluminum anode is over 44%, and the life of battery is longer than 2400 h.
基金the Chinese Academy of scienee and technology service network planning(No.KFJSTS-QYZD-140)a program of Cooperation of Hubei Province and Chinese Academy of Sciences,Innovation team project of Beijing Institute of Science and Technology(No.IG201703N)"13^th five-year"Science and Technology Research Program of the Education Department of Jilin Provinee(No.JJKH20190862KJ).
文摘Sustainable blends of poly(propylene carbonate)(PPC)and stereocomplex polylactide(sc-PLA)were prepared by melt blending equimolar poly(L-lactic acid)(PLLA)and poly(D-lactide acid)(PDLA)with PPC to form sc-PLA crystals in situ in the melt blending process.Differential seanning calorimetry analysis revealed that only sc-PLA,no homo-crystallization of PLLA or PDLA,formed in the PPC matrix as the sc-PLA con tent was more than 10 wt%.Very in triguingly,scan ning electronic microscopy observati on showed that sc-PLA was evenly dispersed in the PPC phase as spherical particles and the sizes of sc-PLA particles did not obviously increase with in creasing sc-PLA con tent.As a con seque nee,the rheological properties of PPC were greatly improved by incorporation of sc-PLA.When the sc-PLA con tent was 20 wt%,a percolati on n etwork structure was formed,and the blends showed solid-like behavior.The sc-PLA particles could reinforce the PPC matrix,especially at a temperature above the glass transition temperature of PPC.Moreover,the Vicat softening temperature of PPC/sc-PLA blends could be increased compared with that of neat PPC.
基金supported by the National Science Foundation of China(No.82003689,to Mengnan Zhao,China)the Outstanding Young Scientific Talent Foundation of Sichuan Province(No.2022JDJQ0052,to Sanjun Shi,China)+3 种基金the China Postdoctoral Science Foundation(No.2021M690489,to Mengnan Zhao,China)the Project of High-Level Talents in Sichuan Province(No.003113014003,to Sanjun Shi,China)the International Postdoctoral Exchange Fellowship Program(No.YJ20200040,to Mengnan Zhao,China)the Xinglin Scholar Research Promotion Project of Chengdu University of Traditional Chinese Medicine(No.BSH2020006,to Mengnan Zhao,China).
文摘RNAs are involved in the crucial processes of disease progression and have emerged as powerful therapeutic targets and diagnostic biomarkers.However,efficient delivery of therapeutic RNA to the targeted location and precise detection of RNA markers remains challenging.Recently,more and more attention has been paid to applying nucleic acid nanoassemblies in diagnosing and treating.Due to the flexibility and deformability of nucleic acids,the nanoassemblies could be fabricated with different shapes and structures.With hybridization,nucleic acid nanoassemblies,including DNA and RNA nanostructures,can be applied to enhance RNA therapeutics and diagnosis.This review briefly introduces the construction and properties of different nucleic acid nanoassemblies and their applications for RNA therapy and diagnosis and makes further prospects for their development.
基金The work was financially supported by the National Natural Science Foundation of China(Nos.81874233 and 51873207)the Natural Science Foundation of Hubei Province(No.2019CFB465).
文摘An essential concept of cancer immunotherapy is that immunogenic cell death(ICD),characterized by the release of tumor-associated antigens(TAAs)and tumor-specific antigens(TSAs)like neoantigens,danger-associated molecular patterns(DAMPs),and pro-inflammatory cytokines,facilitates the presentation of TAAs and TSAs to adaptive immune cells,eliciting an emerging or reinstating a pre-existing anti-cancer immune response.
基金financially supported by the fund of Science&Technology Bureau of Jilin Province of China(No.20130305028NY)Chinese Science Academy(Changchun Branch)(No.2014SYHZ0019)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2012AA062904)the National Natural Science Foundation of China(No.51021003)
文摘Poly(propylene carbonate) (PPC) was blended with polylactide (PLA) and poly(1,2-propylene glycol adipate) (PPA) using a twin screw extruder. Then the PPC/PLA/PPA films were prepared using the blown film technique. DMA results showed that PPA could act as a plasticizer and improve the miscibility between PPC and PLA. Crystal morphology displayed that blending PLA with the amorphous PPC led to a decrease of the spherulite size of PLA. The results of mechanical tests indicated that PPC-rich films showed high elongation at break and PLA-rich films showed high tear strength and good optical properties. The content of PPC and PLA significantly affected the physical properties of the films. With increasing PPC content, the melt strengths of the PPC/PLA/PPA films were enhanced. These findings contributed to the biodegradable materials application for designing and manufacturing polymer packaging.
基金The study was financially supported by the National Natural Science Foundation of China(Grant Nos.51973216,51873207,51833010,and 51803006)the Science and Technology Development Program of Jilin Province(Grant No.20200404182YY)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2019005).
文摘Intravesical chemotherapy has been recommended after the gold standard of transurethral resection of the bladder tumor to prevent bladder cancer(BC)from local recurrence in the clinic.However,due to rapid urine excretion and barrier protection of the bladder wall,the clinical performances of chemotherapeutic drugs are severely compromised.In the present work,a smart positively charged disulfide-crosslinked nanogel of oligoarginine-poly(ethylene glycol)-poly(L-phenylalanine-co-L-cystine)(R_(9)-PEG-P(LP-co-LC))was prepared to prolong the retention period and enhance the penetration capability of chemotherapeutic agent toward the bladder wall.PEG significantly improved the aqueous dispersibility of the 10-hydroxycamptothecin(HCPT)-loaded R_(9)-PEG-P(LP-co-LC)(i.e.,R_(9)NG/HCPT)and enhanced the mucoadhesive capability by the nonspecific interaction between PEG chain and the bladder mucosa accompanied with the electrostatic interaction between the cationic R_(9)and negatively charged bladder mucosa.Besides,R_(9),as a cell-penetrating peptide,efficiently penetrated through the cell membrane and delivered carried cargo.The disulfide bond endowed the selective release behavior of HCPT triggered by the intracellular reductive microenvironment.As an advanced chemotherapeutic nanoformulation,the smart R_(9)NG/HCPT demonstrated superior cytotoxicity against human BC 5637 cells in vitro and remarkably enhanced tumor suppression activity toward orthotopic BC models of mouse and rat in vivo,indicating its great potential in the clinical intravesical BC chemotherapy.
基金The financial support from the National Natural Science Foundation of China(No.51403202,51622307,51390484,51520105004)are gratefully thanked.
文摘Melanoma has been a serious threat to the human health;however,effective therapeutic methods of this cancer are still limited.Combined local therapy is a crucial approach for achieving a superior anti-tumor efficacy.In this paper,a chemo-immunotherapy system of DOX,IL-2 and IFN-g based on poly(g-ethyl-Lglutamate)-poly(ethylene glycol)-poly(g-ethyl-L-glutamate)(PELG-PEG-PELG)hydrogel was developed for local treatment of melanoma xenograft.The drug release process of this system exhibited a short term of burst release(the first 3 days),followed by a long-term sustained release(the following 26 days).The hydrogel degraded completely within 3 weeks without obvious inflammatory responses in the subcutaneous layer of rats,showing a good biodegradability and biocompatibility.The DOX/IL-2/IFN-g co-loaded hydrogel also showed enhanced anti-tumor effect against B16F10 cells in vitro,through increasing the ratio of cell apoptosis and G2/S phage cycle arrest.Moreover,the combined strategy presented improved therapy efficacy against B16F10 melanoma xenograft without obvious systemic side effects in a nude mice model,which was likely related to both the enhanced tumor cell apoptosis and the increased proliferation of the CD3t/CD4t T-lymphocytes and CD3t/CD8t T-lymphocytes.Overall,the strategy of localized co-delivery of DOX/IL-2/IFN-g using the polypeptide hydrogel provided a promising approach for efficient melanoma therapy.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.51303174,51273196,51203153,51233004,51390484,and 51321062)the Scientific Development Program of Jilin Province(Nos.20140520050JH and 20140309005GX)the Science and Technology Planning Project of Changchun City(No.14KG045).
文摘The osteochondral defects caused by vigorous trauma or physical disease are difficult to be managed.Tissue engineering provides a possible option to regenerate the damaged osteochondral tissues.For osteochondral reconstruction,one intact scaffold should be considered to support the regeneration of both cartilage and subchondral bone.Therefore,the biphasic scaffolds with the mimic structures of osteochondral tissues have been developed to close this chasm.A variety of biomimetic bilayer scaffolds fabricated from natural or synthetic polymers,or the ones loading with growth factors,cells,or both of them make great progresses in osteochondral defect repair.In this review,the preparation and in vitro and/or in vivo verification of bioinspired biphasic scaffolds are summarized and discussed,as well as the prospect is predicted.
基金supported by the National Natural Science Foundation of China(51673185,51973215,51673189,51833010,51829302,and 51520105004)the Jilin Province Science and Technology Development Plan(20170101100JC and 20190103112JH)Ministry of Science and Technology of China(2016YFC1100701).
文摘Tumor-promoting inflammation is accompanied by cancer initiation,progression,and metastasis.Cyclooxygenase-2(COX-2)and its downstream product,prostaglandin E2(PGE2),play critical roles in tumor-promoting inflammation.Several studies have revealed the potential of COX-2 inhibition in improving cancer response to chemotherapy,as well as immunotherapy.Aspirin,a nonsteroidal anti-inflammatory drug,has been reported as a COX-2 inhibitor.However,as a small molecule drug with a carboxyl group,there is still the lack of effective methods of preparing polymer–aspirin conjugates with tumor stimuli-responsive release properties.Herein,we synthesized a reactive oxygen species(ROS)-responsive aspirin polymeric prodrug(P3C-Asp)via Passerini three-component reaction between aspirin,4-formylbenzeneboronic acid pinacol ester,and 5-isocyanopent-1-yne,followed by copper(I)-catalyzed alkyne-azide cycloaddition“click”reaction of the aspirin prodrug with dextran(DEX).The P3C-Asp could release aspirin and salicylic acid in response to tumor-specific stimuli.In the murine colorectal cancer model,P3C-Asp suppressed tumor growth effectively without significant side effects and eradicated tumors when combined with the immune checkpoint inhibitor,anti-PD-1 antibody(aPD-1).Further analysis revealed that the suppression was attributable to changes in the immune microenvironment,including reduced PGE2 content,as well as increased infiltration of CD8+T cells and M1 macrophages.The results mentioned above proved that targeting COX-2 pathway with a proper polymeric prodrug might be a useful strategy for cancer immunotherapy.
文摘A simple calcination method was employed to prepare a Z-scheme N-doped K4Nb6O17/g-C3N4(KCN)heterojunction photocatalyst,in which the electronic structure of K4Nb6O17 was regulated by N-doping,and g-C3N4 was formed both on the surface and within the interlayer spaces of K4Nb6O17.The KCN composite showed profoundly improved photocatalytic activity for both H2 generation and RhB degradation compared to its counterparts.This improved performance was attributed to the synergistic effects of N-doping,which broadened its light harvesting ability,and heterojunction formation,which increased the charge separation rate.The relatively low BET specific surface area of the KCN composite had little effect on its photocatalytic activity.Based on ESR spectroscopy studies,•O2^−,•OH,and h^+are the main active species in the photocatalytic degradation of RhB.Thus,it is reasonable to propose a Z-scheme photocatalytic mechanism over the KCN composite,which exhibits the dual advantages of efficient charge separation and high redox ability.Our work provides a simple approach for constructing large-scale Z-scheme heterojunction photocatalysts with high photocatalytic performance.
基金supported by the Natural Science Foundation of Hebei Province(E2015202356)Key R&D Plan Self-raised Project of Hebei Province(16214406)Technology Innovation Foundation Project for Outstanding Youth of Hebei University of Technology(2013009)
文摘Pristine LiNi_(0.5)Mn_(1.5)O_4 and cerium doped LiCe_xNi_(0.5–x)Mn_(1.5)O_4(x=0.005, 0.01, 0.02) cathode materials were synthesized by solid-state method. The effect of Ce doping content on structure and electrochemical properties of LiNi_(0.5)Mn_(1.5)O_4 cathode material was systematically investigated. The samples were characterized by X-ray diffraction(XRD), Fourier transformation infrared spectrometer(FT-IR), scanning electron microscopy(SEM), electrochemical impedance spectroscopy(EIS), cyclic voltammetry(CV) and constant-current charge/discharge tests. The results showed that Ce doping did not change the cubic spinel structure with Fd3m space group, but effectively restrained the formation of Li_xNi_(1–x)O impurity phase. Appropriate Ce doping(x=0.005) could decrease the extent of confusion between lithium ions and transition metal ions, increase the lattice parameter and Ni/Mn disordering degree(Mn^(3+) content). The synergic effects of the above factors led to the optimal electrochemical performance of LiCe_(0.005)Ni_(0.495)Mn_(1.5)O_4 sample. The discharge capacity at 10 C rate could reach 115.4 mAh/g, 94.82% of that at 0.2C rate, and the capacity retention rate after 100 cycles at 1C rate could reach 94.51%. However, heavier Ce doping had an adverse effect on the electrochemical properties, which might be due to the lower disordering degree and existence of more CeO_2 secondary phase.