The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well ch...The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the "high performance" methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements.展开更多
The number of wireless electronic gadgets used in mobile communication, vehicle collision avoidance system, compact radars, etc. is extremely increasing at a rapid rate. Thus, the characteristics of the antennas invol...The number of wireless electronic gadgets used in mobile communication, vehicle collision avoidance system, compact radars, etc. is extremely increasing at a rapid rate. Thus, the characteristics of the antennas involved in these gadgets are to be designed very stringently so as to avoid interferences & coupling and to improve compatibility, susceptibility, etc. Compact smart antenna with improved performance is highly essential to meet this challenging scenario. Mutual coupling between various elements of an array is one of the main factors which can be considered for improvement of performance of the antenna. Influence of mutual coupling on performance of the antenna is considered in this paper and various techniques to minimize this effect are presented. Effect of mutual coupling on radiation characteristics of the antenna can be compensated employing various methods like Conventional Mutual Impedance (CMI), Receiving Mutual Impedance (RMI). Analysis is presented as comparison between the two methods for different number of elements in the array. Analysis is also presented for different geometries of the array like circular and elliptical for improved performance. The results show performance improvement in the proposed array for parameters like SNR and Speed of convergence.展开更多
文摘The quantitative analysis of glutathione (GSH) is important in different fields like medicine, biology, and biotechnology. Accurate quantitative measurements of this analyte have been hampered by the lack of well characterized reference standards. The proposed procedure is intended to provide an accurate and definitive method for the quantitation of GSH for reference measurements. Measurement of the stoichiometrically existing sulfur content in purified GSH offers an approach for its quantitation and calibration through an appropriate characterized reference material (CRM) for sulfur would provide a methodology for the certification of GSH quantity, that is traceable to SI (International system of units). The inductively coupled plasma optical emission spectrometry (ICP-OES) approach negates the need for any sample digestion. The sulfur content of the purified GSH is quantitatively converted into sulfate ions by microwave-assisted UV digestion in the presence of hydrogen peroxide prior to ion chromatography (IC) measurements. The measurement of sulfur by ICP-OES and IC (as sulfate) using the "high performance" methodology could be useful for characterizing primary calibration standards and certified reference materials with low uncertainties. The relative expanded uncertainties (% U) expressed at 95% confidence interval for ICP-OES analyses varied from 0.1% to 0.3%, while in the case of IC, they were between 0.2% and 1.2%. The described methods are more suitable for characterizing primary calibration standards and certifying reference materials of GSH, than for routine measurements.
文摘The number of wireless electronic gadgets used in mobile communication, vehicle collision avoidance system, compact radars, etc. is extremely increasing at a rapid rate. Thus, the characteristics of the antennas involved in these gadgets are to be designed very stringently so as to avoid interferences & coupling and to improve compatibility, susceptibility, etc. Compact smart antenna with improved performance is highly essential to meet this challenging scenario. Mutual coupling between various elements of an array is one of the main factors which can be considered for improvement of performance of the antenna. Influence of mutual coupling on performance of the antenna is considered in this paper and various techniques to minimize this effect are presented. Effect of mutual coupling on radiation characteristics of the antenna can be compensated employing various methods like Conventional Mutual Impedance (CMI), Receiving Mutual Impedance (RMI). Analysis is presented as comparison between the two methods for different number of elements in the array. Analysis is also presented for different geometries of the array like circular and elliptical for improved performance. The results show performance improvement in the proposed array for parameters like SNR and Speed of convergence.