The hardness, tensile strength and impact toughness of one quenched andtempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both atroom temperature and at elevated temperatures w...The hardness, tensile strength and impact toughness of one quenched andtempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both atroom temperature and at elevated temperatures were investigated in order to develop high-strengthsteel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensilestrength at elevated temperature in comparison with the commonly used G4335V high-strength gunsteel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strengthof the steel is attributed to the strong secondary hardening effect and high tempering softeningresistance caused by the tempering precipitation of fine Mo-rich M_2C carbides in the α-Fe matrix.The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, itsroom-temperature impact energy is much higher than the normal requirement of impact toughness forhigh strength gun steels. Therefore, the steel is suitable for production of long-life high-strengthgun barrels with the combination of superior elevated-temperature strength and good impacttoughness.展开更多
文摘The hardness, tensile strength and impact toughness of one quenched andtempered steel with nominal composition of Fe-0.25C-3.0Cr-3.0Mo-0.6Ni-0.1Nb (mass fraction) both atroom temperature and at elevated temperatures were investigated in order to develop high-strengthsteel for long-life gun barrel use. It is found that the steel has lower decrease rate of tensilestrength at elevated temperature in comparison with the commonly used G4335V high-strength gunsteel, which contains higher Ni and lower Cr and Mo contents. The high elevated-temperature strengthof the steel is attributed to the strong secondary hardening effect and high tempering softeningresistance caused by the tempering precipitation of fine Mo-rich M_2C carbides in the α-Fe matrix.The experimental steel is not susceptible to secondary hardening embrittlement, meanwhile, itsroom-temperature impact energy is much higher than the normal requirement of impact toughness forhigh strength gun steels. Therefore, the steel is suitable for production of long-life high-strengthgun barrels with the combination of superior elevated-temperature strength and good impacttoughness.