Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5...Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.展开更多
Charge is a fundamental physical property of matter that is responsible for its interactions with electromagnetic fields. The real nature and the essence of charge are unknown. In this paper, a new theory is presented...Charge is a fundamental physical property of matter that is responsible for its interactions with electromagnetic fields. The real nature and the essence of charge are unknown. In this paper, a new theory is presented to describe the nature and the essence of electric charge is formulated based on the vortex model of the electron which has a finite size and has an irrotational vortex structure. This theory and the vortex model of the electron enables us, for the first time, to describe the origin of bivalency, stability, quantization, equality of the absolute values of the bivalent charges, to derive a simple formulation to calculate the electric charge based on hydrodynamics without the use any constant. The difference between negative and positive charge, is revealed and the charged particles interactions are described. The electric charge is an expression of accelerated spherical mass per area reduced by the stiffness of the vacuum which has the units <i>ε</i><sub>0</sub> ML<sup>3</sup>/T<sup>2</sup>. The calculated results based on these equations comply accurately with the experimental results.展开更多
The nature and the origin of the fine structure are described. Based on the vortex model and hydrodynamics, a comprehensible interpretation of the fine structure constant is developed. The vacuum considered to have su...The nature and the origin of the fine structure are described. Based on the vortex model and hydrodynamics, a comprehensible interpretation of the fine structure constant is developed. The vacuum considered to have superfluid characteristics and elementary particles such as the electron and Hydrogen molecule are irrotational vortices of this superfluid. In such a vortex, the angular rotation ω is maintained, and the larger the radius, the slower the rotational speed. The fine structure value is derived from the ratio of the rotational speed of the boundaries of the vortex to the speed of the vortex eye in its center. Since the angular rotation is constant, the same value was derived from the ratio between the radius of the constant vortex core and the radius of the hall vortex. Therefore, the constancy of alpha is an expression of the constancy relation in the vortex structure.展开更多
Electric constant believed fundamental constant determined only by physical measurement and cannot be calculated. A new theory about the origin and the essence of the electric constant is proposed and mathematical for...Electric constant believed fundamental constant determined only by physical measurement and cannot be calculated. A new theory about the origin and the essence of the electric constant is proposed and mathematical formulation is described. The vacuum is considered to be superfluid and the electric constant is described as a physical property of the “vacuum”. Hydrodynamics laws are applied to calculate the elasticity and the compressibility of the vacuum to obtain the electric constant value. Thus, electric permittivity is the expression of compressibility of the vacuum which is the capability of the vacuum to permit electric field lines. In conclusion, electric constant is not fundamental constant but observable parameter of the vacuum which depends mainly by the vacuum density. This result could have important consequences in our understanding the origin of physical forces forward Universal Unified Theory based on one constant only, the density of the vacuum.展开更多
A theory employing the vortex shape of the electron was presented to resolve the enigma of the wave-particle duality. Conventions such as “particle” and “wave” were used to describe the behavior of quantum objects...A theory employing the vortex shape of the electron was presented to resolve the enigma of the wave-particle duality. Conventions such as “particle” and “wave” were used to describe the behavior of quantum objects such as electrons. A superfluid vacuum formed the base to describe the basic vortex structure and properties of the electron, whereas various formulations derived from hydrodynamic laws described the electron vortex circumference, radius, angular velocity and angular frequency, angular momentum (spin) and magnetic momentum. A vortex electron fully explained the associations between momentum and wave, and hydrodynamic laws were essential in deriving the energy and angular frequency of the electron. In general, an electron traveling in space possesses internal and external motions. To derive the angular frequency of its internal motion, the Compton wavelength was used to represent the length of one cycle of the internal motion that is equal to the circumference of the electron vortex. The angular frequency of the electron vortex was calculated to obtain the same value according to Planck’s theory. A traveling vortex electron has internal and external motions that create a three-dimensional helix trajectory. The magnitude of the instantaneous velocity of the electron is the resultant of its internal and external velocities, being equal to the internal velocity reduced by the Lorentz factor (whose essence is presented in a detailed formulation). The wavelength of the helix trajectory represents the distance traveled by a particle along its axis during one period of revolution around the axis, resulting in the same de Broglie wavelength that corresponds to the helix pitch of the helix. Mathematical formulations were presented to demonstrate the relation between the energy of the vortex and its angular frequency and de Broglie’s wavelength;furthermore, Compton’s and de Broglie’s wavelengths were also differentiated.展开更多
In this study, the essence and origin of the magnetic constant are discussed and a mechanism that allows real estimations of the magnetic constant based upon the vacuum density description is proposed. By considering ...In this study, the essence and origin of the magnetic constant are discussed and a mechanism that allows real estimations of the magnetic constant based upon the vacuum density description is proposed. By considering the vacuum as a liquid with a measurable density and the electron as a vortex, hydrodynamic laws are applied to measure the diminished momentum of a rotating electron in a vacuum, thus obtaining a value similar to the experimentally derived value of the magnetic constant. A consequence of this description is that the magnetic constant can be expressed as the shear stress per unit time of the vacuum;this means that it is an observable vacuum parameter and not a fundamental constant.展开更多
文摘Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology.
文摘Charge is a fundamental physical property of matter that is responsible for its interactions with electromagnetic fields. The real nature and the essence of charge are unknown. In this paper, a new theory is presented to describe the nature and the essence of electric charge is formulated based on the vortex model of the electron which has a finite size and has an irrotational vortex structure. This theory and the vortex model of the electron enables us, for the first time, to describe the origin of bivalency, stability, quantization, equality of the absolute values of the bivalent charges, to derive a simple formulation to calculate the electric charge based on hydrodynamics without the use any constant. The difference between negative and positive charge, is revealed and the charged particles interactions are described. The electric charge is an expression of accelerated spherical mass per area reduced by the stiffness of the vacuum which has the units <i>ε</i><sub>0</sub> ML<sup>3</sup>/T<sup>2</sup>. The calculated results based on these equations comply accurately with the experimental results.
文摘The nature and the origin of the fine structure are described. Based on the vortex model and hydrodynamics, a comprehensible interpretation of the fine structure constant is developed. The vacuum considered to have superfluid characteristics and elementary particles such as the electron and Hydrogen molecule are irrotational vortices of this superfluid. In such a vortex, the angular rotation ω is maintained, and the larger the radius, the slower the rotational speed. The fine structure value is derived from the ratio of the rotational speed of the boundaries of the vortex to the speed of the vortex eye in its center. Since the angular rotation is constant, the same value was derived from the ratio between the radius of the constant vortex core and the radius of the hall vortex. Therefore, the constancy of alpha is an expression of the constancy relation in the vortex structure.
文摘Electric constant believed fundamental constant determined only by physical measurement and cannot be calculated. A new theory about the origin and the essence of the electric constant is proposed and mathematical formulation is described. The vacuum is considered to be superfluid and the electric constant is described as a physical property of the “vacuum”. Hydrodynamics laws are applied to calculate the elasticity and the compressibility of the vacuum to obtain the electric constant value. Thus, electric permittivity is the expression of compressibility of the vacuum which is the capability of the vacuum to permit electric field lines. In conclusion, electric constant is not fundamental constant but observable parameter of the vacuum which depends mainly by the vacuum density. This result could have important consequences in our understanding the origin of physical forces forward Universal Unified Theory based on one constant only, the density of the vacuum.
文摘A theory employing the vortex shape of the electron was presented to resolve the enigma of the wave-particle duality. Conventions such as “particle” and “wave” were used to describe the behavior of quantum objects such as electrons. A superfluid vacuum formed the base to describe the basic vortex structure and properties of the electron, whereas various formulations derived from hydrodynamic laws described the electron vortex circumference, radius, angular velocity and angular frequency, angular momentum (spin) and magnetic momentum. A vortex electron fully explained the associations between momentum and wave, and hydrodynamic laws were essential in deriving the energy and angular frequency of the electron. In general, an electron traveling in space possesses internal and external motions. To derive the angular frequency of its internal motion, the Compton wavelength was used to represent the length of one cycle of the internal motion that is equal to the circumference of the electron vortex. The angular frequency of the electron vortex was calculated to obtain the same value according to Planck’s theory. A traveling vortex electron has internal and external motions that create a three-dimensional helix trajectory. The magnitude of the instantaneous velocity of the electron is the resultant of its internal and external velocities, being equal to the internal velocity reduced by the Lorentz factor (whose essence is presented in a detailed formulation). The wavelength of the helix trajectory represents the distance traveled by a particle along its axis during one period of revolution around the axis, resulting in the same de Broglie wavelength that corresponds to the helix pitch of the helix. Mathematical formulations were presented to demonstrate the relation between the energy of the vortex and its angular frequency and de Broglie’s wavelength;furthermore, Compton’s and de Broglie’s wavelengths were also differentiated.
文摘In this study, the essence and origin of the magnetic constant are discussed and a mechanism that allows real estimations of the magnetic constant based upon the vacuum density description is proposed. By considering the vacuum as a liquid with a measurable density and the electron as a vortex, hydrodynamic laws are applied to measure the diminished momentum of a rotating electron in a vacuum, thus obtaining a value similar to the experimentally derived value of the magnetic constant. A consequence of this description is that the magnetic constant can be expressed as the shear stress per unit time of the vacuum;this means that it is an observable vacuum parameter and not a fundamental constant.