Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity co...Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.展开更多
Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage...Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials.Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence(AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening,activity scoring, quantitative structure-activity relationship(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity(ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability,deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules,which will further promote the application of AI technologies in the field of drug design.展开更多
Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) popul...Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.展开更多
Porcine epidemic diarrhea(PED)caused by porcine epidemic diarrhea virus(PEDV)is one of the most devastating diseases in the global pig industry due to its high mortality rate in piglets.Maternal vaccines can effective...Porcine epidemic diarrhea(PED)caused by porcine epidemic diarrhea virus(PEDV)is one of the most devastating diseases in the global pig industry due to its high mortality rate in piglets.Maternal vaccines can effectively enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge.From 2017 to 2021,we collected 882 diarrhea samples from 303 farms in China to investigate the epidemiology of PEDV.The result showed that about 52.15%(158/303)of the farms were positive for PEDV with an overall detection rate of 63.95%(564/882)of the samples.The S1 fragments of S gene from 104 strains were sequenced for the phylogenetic analysis.A total of 71 PEDV strains(68.27%)sequenced in this study were clustered into the predominant G2c subgroup,while the newly-defined G2d strains(9.62%)were identified in three provinces of China.The NH-TA2020 strain of G2c subgroup was isolated and cultured,and its infection to piglets caused watery diarrhea within 24 h,indicating its strong pathogenicity.Oral administration of NH-TA2020 strain to pregnant gilts stimulated high levels of IgA antibody in colostrum.The piglets fed by the gilts above were challenged with NH-TA2020 strain or CH-HeB-RY-2020 strain from G2d subgroup,and the clinical symptoms and virus shedding were significantly reduced compared to the mock group.Our findings suggest that G2c subgroup is the predominant branch circulating in China from 2017 to 2021.Oral administration of NH-TA2020 enhances maternal IgA and lactogenic immune responses,which confer protection against the homologous and emerging G2d PEDV strains challenges in neonates.展开更多
This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinv...This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.展开更多
This paper explores the association between intestinal microecology and digestive health and disease recovery in children with pneumonia.Intestinal microecological imbalance is common in children with pneumonia,which ...This paper explores the association between intestinal microecology and digestive health and disease recovery in children with pneumonia.Intestinal microecological imbalance is common in children with pneumonia,which is closely associated with digestive health and disease recovery.Intestinal microecological imbalance may affect digestive enzyme activity,intestinal mucosal barrier function,and nutrient absorption,which in turn affects digestive health.In addition,intestinal microecological imbalances may be associated with immune regulation,inflammatory responses,and pathogen suppression,affecting disease recovery.Strategies to regulate intestinal microecology include probiotic supplementation,dietary modification,and pharmacological treatment.Currently,the study of intestinal microecology in children with pneumonia faces challenges,and there is a need for improved research methods,individualized treatment strategies,and the development of novel probiotics.In conclusion,the intestinal microecology of children with pneumonia is closely related to digestive health and disease recovery,and the regulation of intestinal microecology is of great significance to the treatment of children with pneumonia.Furthermore,future research should further explore the application of the microecology of the intestinal microecology in the treatment of children with pneumonia.展开更多
Flos Sophorae and Fructus Sophorae are two kinds of traditional Chinese medicines. In this work, the two kinds of traditional Chinese medicines collected from eleven areas of Dezhou, were analyzed by inductively coupl...Flos Sophorae and Fructus Sophorae are two kinds of traditional Chinese medicines. In this work, the two kinds of traditional Chinese medicines collected from eleven areas of Dezhou, were analyzed by inductively couple plasma-mass spectrometry (ICP-MS) to compare the content and distribution of 14 kinds of rare earth elements (REEs). The method was verified by analyzing GBW07605 certified reference material. The results showed that ICP-MS is an accurate, sensitive and reliable technique for determining REEs in traditional Chinese medicine. There were big differences in contents for REEs in Flos Sophorae and Fmctus Sophorae from different areas. The contents of total REEs in Flos Sophorae samples from different areas ranged from 1.0785 to 2.2659 μg/g, while those in Fmctus Sophorae from 0.6826 to 1.0527 ktg/g. The contents of total REEs in Flos Sophorae samples from different areas were obviously higher than those in Fmctus Sophorae of the same area and there was big difference between various Flos Sophorae samples. Interestingly, the higher the content of total REEs in Flos Sophorae samples, the lower the content of total REEs in Fmctus Sophorae samples of the same area. The plots of normalized element concentration versus atomic number showed some characteristic distribution trends. The distribution trend of light REEs (La-Gd) was relatively fiat except a positive Eu anomaly, however, that was steep and discrepant for heavy REEs (Tb-Lu). The results could provide a valuable reference for understanding the relationship between the curative mechanism, pharmacology characteristics and their geological condition for the two traditional Chinese medicines investigated.展开更多
Constructing nanocomposites that combine the advantages of composite materials,nanomaterials,and interfaces has been regarded as an important strategy to improve the photocatalytic activity of TiO2.In this study,2D‐2...Constructing nanocomposites that combine the advantages of composite materials,nanomaterials,and interfaces has been regarded as an important strategy to improve the photocatalytic activity of TiO2.In this study,2D‐2D TiO2 nanosheet/layered WS2(TNS/WS2)heterojunctions were prepared via a hydrothermal method.The structure and morphology of the photocatalysts were systematically characterized.Layered WS2(~4 layers)was wrapped on the surface of TiO2 nanosheets with a plate‐to‐plate stacked structure and connected with each other by W=O bonds.The as‐prepared TNS/WS2 heterojunctions showed higher photocatalytic activity for the degradation of RhB under visible‐light irradiation,than pristine TiO2 nanosheets and layered WS2.The improvement of photocatalytic activity was primarily attributed to enhanced charge separation efficiency,which originated from the perfect 2D‐2D nanointerfaces and intimate interfacial contacts between TiO2 nanosheets and layered WS2.Based on experimental results,a double‐transfer photocatalytic mechanism for the TNS/WS2 heterojunctions was proposed and discussed.This work provides new insights for synthesizing highly efficient and environmentally stable photocatalysts by engineering the surface heterojunctions.展开更多
In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation...In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.展开更多
The western flower thrips, Frankliniella occidentalis, is one of the most destructive sucking pests of vegetables, fruits and ornamental crops in China. Spinosad is one of the most commonly used insecticides to manage...The western flower thrips, Frankliniella occidentalis, is one of the most destructive sucking pests of vegetables, fruits and ornamental crops in China. Spinosad is one of the most commonly used insecticides to manage thrips. To assess the incidence of spinosad resistance in F. occidentalis field populations in eastern China, survival rates for 24 different populations were compared with those of a susceptible laboratory strain. All populations showed significantly higher resistance to spinosad compared with the control as determined by comparing median lethal concentrations. Two populations from Shouguang and Liaocheng in Shandong Province were classified as having moderate and high levels of resistance to spinosad with a mean resistance ratio of 17.0 and 89.2, respectively. Our research indicates a widespread reduction in spinosad efficacy for controlling F. occidentalis field populations, and that resistance management strategies should be implemented as soon as practicable, to reduce the potential of progressive resistance development and loss of efficacy.展开更多
Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which ...Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.展开更多
Aldehyde oxidase(AOX)is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics.AOX-mediated metabolism can result in unexpected outcomes,such as the p...Aldehyde oxidase(AOX)is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics.AOX-mediated metabolism can result in unexpected outcomes,such as the production of toxic metabolites and high metabolic clearance,which can lead to the clinical failure of novel therapeutic agents.Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability.In this study,we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism.AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction,while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks.AOMP significantly outperformed the benchmark methods in both cross-validation and external testing.Using AOMP,we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability,which were validated through in vitro experiments.Furthermore,for the convenience of the community,we established the first online service for AOX metabolism prediction based on AOMP,which is freely available at https://aomp.alphama.com.cn.展开更多
Metal-organic frameworks(MOFs)functionalized with open metal sites(OMSs)have received widespread attention in various applications due to their fascinating electronic properties and unique interactions with guest mole...Metal-organic frameworks(MOFs)functionalized with open metal sites(OMSs)have received widespread attention in various applications due to their fascinating electronic properties and unique interactions with guest molecules.However,rational tailoring of the coordination environment of metal nodes dur-ing the synthesis of MOFs remains a great challenge due to their tendency of saturated coordination with linkers.Herein,we reported the construction of three new MOFs featuring unsaturated Cu(Ⅱ)sites,namely[Cu(HCOO)(pzta)]_(n)(HL-1),{[Cu(PTA)0.5(pzta)(H_(2)O)]·2H_(2)O}_(n)(HL-2)and[Cu(NA)0.5(pzta)]_(n)(HL-3)(Hpzta=3-pyrazinyl-1,2,4-triazole;PTA=terephthalic acid;NA=1,4-naphthalene dicarboxylic acid),based on the mixed-linker strategy via specific selection of versatile Hpzta ligand and carboxylate ligands.Re-markably,the obtained MOFs exhibited excellent activity and good recyclability for the catalytic reduction of nitroaromatics under mild conditions(25℃and 1 atm).In particular,the complete conversion of 4-nitrophenol(4-NP)took only 30 s on HL-2,reaching a record-high TOF value compared with previously reported metal catalysts.The combined experimental and theoretical studies on HL-2 revealed that the open Cu site with positive-charged nature could improve the adsorption and subsequent electron trans-port between the substrates,and was responsible for the outstanding performance.This work shined lights on the further enhancement of performance for MOFs through rational OMSs construction.展开更多
Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis ...Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.展开更多
Adenosine triphosphate(ATP)is closely related to the pathogenesis of certain diseases,so the detection of trace ATP is of great significance to disease diagnosis and drug development.Graphene field-effect transistors(...Adenosine triphosphate(ATP)is closely related to the pathogenesis of certain diseases,so the detection of trace ATP is of great significance to disease diagnosis and drug development.Graphene field-effect transistors(GFETs)have been proven to be a promising platform for the rapid and accurate detection of small molecules,while the Debye shielding limits the sensitive detection in real samples.Here,a three-dimensional wrinkled graphene field-effect transistor(3D WG-FET)biosensor for ultra-sensitive detection of ATP is demonstrated.The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM,which is much lower than the reported results.In addition,the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM.Meanwhile,we achieved ultra-sensitive(LOD:10 aM)and quantitative(range from 10 aM to 100 fM)measurements of ATP in human serum.The 3D WG-FET also exhibits high specificity.This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix,showing a broad application value for early clinical diagnosis and food health monitoring.展开更多
Electrochemical CO_(2)reduction is a viable,economical,and sustainable method to transform atmospheric CO_(2)into carbon-based fuels and effectively reduce climate change and the energy crisis.Constructing robust cata...Electrochemical CO_(2)reduction is a viable,economical,and sustainable method to transform atmospheric CO_(2)into carbon-based fuels and effectively reduce climate change and the energy crisis.Constructing robust catalysts through interface engineering is significant for electrocatalytic CO_(2)reduction(ECR)but remains a grand challenge.Herein,SnO2/Bi_(2)O_(2)CO_(3)heterojunction on N,S-codoped-carbon(SnO_(2)/BOC@NSC)with efficient ECR performance was firstly constructed by a facile synthetic strategy.When the SnO_(2)/BOC@NSC was utilized in ECR,it exhibits a large formic acid(HCOOH)partial current density(JHCOOH)of 86.7 mA·cm^(−2)at−1.2 V versus reversible hydrogen electrode(RHE)and maximum Faradaic efficiency(FE)of HCOOH(90.75%at−1.2 V versus RHE),respectively.Notably,the FEHCOOH of SnO_(2)/BOC@NSC is higher than 90%in the flow cell and the JHCOOH of SnO_(2)/BOC@NSC can achieve 200 mA·cm^(−2)at−0.8 V versus RHE to meet the requirements of industrialization level.The comparative experimental analysis and in-situ X-ray absorption fine structure reveal that the excellent ECR performance can be ascribed to the synergistic effect of SnO_(2)/BOC heterojunction,which enhances the activation of CO_(2)molecules and improves electron transfer.This work provides an efficient SnO_(2)-based heterojunction catalyst for effective formate production and offers a novel approach for the construction of new types of metal oxide heterostructures for other catalytic applications.展开更多
The universal synthesis of highly stable covalent organic frameworks(COFs)for ultra-sensitive and multi-component electrochemical detection in different scenarios remains a great challenge.Herein,a series of metalloph...The universal synthesis of highly stable covalent organic frameworks(COFs)for ultra-sensitive and multi-component electrochemical detection in different scenarios remains a great challenge.Herein,a series of metallophthalocyanine-based twodimensional(2D)dioxin(DXI)-linked metalophthalocyanine(MPc)-n DXI-COFs(M=Ni,Zn;n=1,2)are afforded in high yield(80%-96%)by a facile trace-quinoline assisted one-pot condensation of tetracarbonitrile precursors.Powder X-ray diffraction and electron microscopy investigations disclose their lamellar texture 2D network with AA stacking mode.Experiments and calculation results elucidate that the 2DXI-linked MPc-2DXI-COFs provide the stronger built-in electronic field and more electrostatic/hydrogen bonding adsorption sites than DXI-linked MPc-DXI-COFs,and the lower electrode reaction Gibbs free energy and stronger adsorption of analytes at Ni Pc than Zn Pc unit,which grants Ni Pc-2DXI-COF excellent sensing properties for various analytes including neurotransmitters,organic pollutants,and heavy metal ions,with high sensitivity and low detection limit of 0.53 to 25.66 nM.Especially in binary and ternary systems and even in real-world conditions,simultaneous multi-component detection could be achieved.展开更多
Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coal...Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity.展开更多
Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified ...Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified by cetyltrimethylammonium bromide(CTAB) and trimethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-trideca fluorooctyl) silane(FOTS) to increase the hydrophobicity of MXenes.The ammonia(NH_(3)) production rate and faradaic efficiency(FE) are improved from 37.62 to 54.01 μg h^(-1)mg_(cat)^(-1).and 5.5% to 18.1% at-0.7 V vs.RHE,respectively after surface modification.^(15)N isotopic labeling experiment confirms that nitrogen in produced ammonia originates from N_(2) in the electrolyte.The excellent NRR activity of surface hydrophobic MXenes is mainly due to surfactant molecules,which inhibit the entry of water molecules and the competitive HER,which have been verified by in situ FT-IR,DFT and molecular dynamics calculations.This strategy provides an ingenious method to design more active NRR electrocatalysts.展开更多
Objective:To analyze the effect of bortezomib combined with dexamethasone and lenalidomide in the treatment of multiple myeloma.Methods:60 cases of multiple myeloma patients admitted to our hospital from January 2022 ...Objective:To analyze the effect of bortezomib combined with dexamethasone and lenalidomide in the treatment of multiple myeloma.Methods:60 cases of multiple myeloma patients admitted to our hospital from January 2022 to December 2023 were selected randomly,with 30 cases in each group.Bortezomib combined with dexamethasone was administered in the control group,and bortezomib combined with dexamethasone and lenalidomide was given to the observation group,and the treatment effect was analyzed.Results:After treatment,CD^(3+)and CD^(4+)of the observation group were higher than that of the control group,CD^(8+)was lower than that of the control group,and the total treatment efficiency was higher,which was statistically significant(P<0.05),and there was no difference in the total incidence of adverse reactions between the two groups(P>0.05).Conclusion:Bortezomib combined with dexamethasone and lenalidomide is effective in the treatment of multiple myeloma as it regulates the immune function and is safe,thus it can be promoted in clinical practice.展开更多
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05130703)Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-YW-224)2020-Planning Project of Yantai Institute of Coastal Zone Research of Chinese Academy of Sciences(No.Y254021031-6)
文摘Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.
基金supported by the National Natural Science Foundation of China (21210003 and 81230076 to H.J., 81773634 to M.Z. and 81430084 to K.C.)the “Personalized Medicines-Molecular Signature-based Drug Discovery and Development”, Strategic Priority Research Program of the Chinese Academy of Sciences (XDA12050201 to M.Z.)+1 种基金National Key Research & Development Plan (2016YFC1201003 to M.Z.)the National Basic Research Program (2015CB910304 to X.L.)
文摘Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials.Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence(AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening,activity scoring, quantitative structure-activity relationship(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity(ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability,deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules,which will further promote the application of AI technologies in the field of drug design.
基金the National Natural Science Foundation of China (30671270)the Hi-Tech Research and Development (863) Program of China(2006AA10Z1E9 and 2006AA100101)
文摘Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level. Herein, we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) population of 168 lines, which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties, Huapei 3 and Yumai 57. The map contained 305 loci, represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers, which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map. The chromosomal locations and map positions of 22 new SSR markers were determined, and were found to distribute on 14 linkage groups. Twenty SSR loci showed different chromosomal locations from those reported in other maps. Therefore, this map offers new information on the SSR markers of wheat. This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits. The unique features of this map are discussed.
基金supported by the National Key R&D Program of China(2021ZD0113803)the"Pioneer"and"Leading Goose"R&D Program of Zhejiang (2022C02031)the National Natural Science Foundation of China (No. 31701424)
文摘Porcine epidemic diarrhea(PED)caused by porcine epidemic diarrhea virus(PEDV)is one of the most devastating diseases in the global pig industry due to its high mortality rate in piglets.Maternal vaccines can effectively enhance the gut-mammary gland-secretory IgA axis to boost lactogenic immunity and passive protection of nursing piglets against PEDV challenge.From 2017 to 2021,we collected 882 diarrhea samples from 303 farms in China to investigate the epidemiology of PEDV.The result showed that about 52.15%(158/303)of the farms were positive for PEDV with an overall detection rate of 63.95%(564/882)of the samples.The S1 fragments of S gene from 104 strains were sequenced for the phylogenetic analysis.A total of 71 PEDV strains(68.27%)sequenced in this study were clustered into the predominant G2c subgroup,while the newly-defined G2d strains(9.62%)were identified in three provinces of China.The NH-TA2020 strain of G2c subgroup was isolated and cultured,and its infection to piglets caused watery diarrhea within 24 h,indicating its strong pathogenicity.Oral administration of NH-TA2020 strain to pregnant gilts stimulated high levels of IgA antibody in colostrum.The piglets fed by the gilts above were challenged with NH-TA2020 strain or CH-HeB-RY-2020 strain from G2d subgroup,and the clinical symptoms and virus shedding were significantly reduced compared to the mock group.Our findings suggest that G2c subgroup is the predominant branch circulating in China from 2017 to 2021.Oral administration of NH-TA2020 enhances maternal IgA and lactogenic immune responses,which confer protection against the homologous and emerging G2d PEDV strains challenges in neonates.
基金Supported by National Natural Science Foundation of China under Grant No.60641006the National Science Foundation of Shandong Province under Grant No.Y2007A06
文摘This paper is devoted to investigating exact solutions of a generalized fractional nonlinear anomalousdiffusion equation in radical symmetry.The presence of external force and absorption is also considered.We firstinvestigate the nonlinear anomalous diffusion equations with one-fractional derivative and then multi-fractional ones.Inboth situations,we obtain the corresponding exact solutions,and the solutions found here can have a compact behavioror a long tailed behavior.
基金Shandong Province Traditional Chinese Medicine Science and Technology Project"Efficacy Evaluation of Acupoint Application Synergy Model Intervention in Bronchoscopic Treatment of Severe Mycoplasma Pneumonia in Children"(Project No.2020M177)。
文摘This paper explores the association between intestinal microecology and digestive health and disease recovery in children with pneumonia.Intestinal microecological imbalance is common in children with pneumonia,which is closely associated with digestive health and disease recovery.Intestinal microecological imbalance may affect digestive enzyme activity,intestinal mucosal barrier function,and nutrient absorption,which in turn affects digestive health.In addition,intestinal microecological imbalances may be associated with immune regulation,inflammatory responses,and pathogen suppression,affecting disease recovery.Strategies to regulate intestinal microecology include probiotic supplementation,dietary modification,and pharmacological treatment.Currently,the study of intestinal microecology in children with pneumonia faces challenges,and there is a need for improved research methods,individualized treatment strategies,and the development of novel probiotics.In conclusion,the intestinal microecology of children with pneumonia is closely related to digestive health and disease recovery,and the regulation of intestinal microecology is of great significance to the treatment of children with pneumonia.Furthermore,future research should further explore the application of the microecology of the intestinal microecology in the treatment of children with pneumonia.
基金Project supported by the Scientific Project of the Dezhou Government (2006067)the Science Fundation of Shandong Province (Q2008B08)the Key Technologies R&D Programme of Shandong Province (2010GSF10615)
文摘Flos Sophorae and Fructus Sophorae are two kinds of traditional Chinese medicines. In this work, the two kinds of traditional Chinese medicines collected from eleven areas of Dezhou, were analyzed by inductively couple plasma-mass spectrometry (ICP-MS) to compare the content and distribution of 14 kinds of rare earth elements (REEs). The method was verified by analyzing GBW07605 certified reference material. The results showed that ICP-MS is an accurate, sensitive and reliable technique for determining REEs in traditional Chinese medicine. There were big differences in contents for REEs in Flos Sophorae and Fmctus Sophorae from different areas. The contents of total REEs in Flos Sophorae samples from different areas ranged from 1.0785 to 2.2659 μg/g, while those in Fmctus Sophorae from 0.6826 to 1.0527 ktg/g. The contents of total REEs in Flos Sophorae samples from different areas were obviously higher than those in Fmctus Sophorae of the same area and there was big difference between various Flos Sophorae samples. Interestingly, the higher the content of total REEs in Flos Sophorae samples, the lower the content of total REEs in Fmctus Sophorae samples of the same area. The plots of normalized element concentration versus atomic number showed some characteristic distribution trends. The distribution trend of light REEs (La-Gd) was relatively fiat except a positive Eu anomaly, however, that was steep and discrepant for heavy REEs (Tb-Lu). The results could provide a valuable reference for understanding the relationship between the curative mechanism, pharmacology characteristics and their geological condition for the two traditional Chinese medicines investigated.
基金supported by the National High Technology Research and Development Program of China(863 Program,2012AA063504)the National Natural Science Foundation of China(U1407116,21511130020,21276193)the Tianjin Municipal Natural Science Foundation(13JCZDJC35600)~~
文摘Constructing nanocomposites that combine the advantages of composite materials,nanomaterials,and interfaces has been regarded as an important strategy to improve the photocatalytic activity of TiO2.In this study,2D‐2D TiO2 nanosheet/layered WS2(TNS/WS2)heterojunctions were prepared via a hydrothermal method.The structure and morphology of the photocatalysts were systematically characterized.Layered WS2(~4 layers)was wrapped on the surface of TiO2 nanosheets with a plate‐to‐plate stacked structure and connected with each other by W=O bonds.The as‐prepared TNS/WS2 heterojunctions showed higher photocatalytic activity for the degradation of RhB under visible‐light irradiation,than pristine TiO2 nanosheets and layered WS2.The improvement of photocatalytic activity was primarily attributed to enhanced charge separation efficiency,which originated from the perfect 2D‐2D nanointerfaces and intimate interfacial contacts between TiO2 nanosheets and layered WS2.Based on experimental results,a double‐transfer photocatalytic mechanism for the TNS/WS2 heterojunctions was proposed and discussed.This work provides new insights for synthesizing highly efficient and environmentally stable photocatalysts by engineering the surface heterojunctions.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant Nos. 2004zx16 and Q2005A01
文摘In this paper, the modified CK's direct method to find symmetry groups of nonlinear partial differential equation is extended to (2+1)-dimensional variable coeffficient canonical generalized KP (VCCGKP) equation. As a result, symmetry groups, Lie point symmetry group and Lie symmetry for the VCCGKP equation are obtained. In fact, the Lie point symmetry group coincides with that obtained by the standard Lie group approach. Applying the given Lie symmetry, we obtain five types of similarity reductions and a lot of new exact solutions, including hyperbolic function solutions, triangular periodic solutions, Jacobi elliptic function solutions and rational solutions, for the VCCGKP equation.
基金financially supported by the National Natural Science Foundation of China (31371942)the National Key Research and Development Program,China (2016YFC1200600)the Ministry of Science and Technology,China
文摘The western flower thrips, Frankliniella occidentalis, is one of the most destructive sucking pests of vegetables, fruits and ornamental crops in China. Spinosad is one of the most commonly used insecticides to manage thrips. To assess the incidence of spinosad resistance in F. occidentalis field populations in eastern China, survival rates for 24 different populations were compared with those of a susceptible laboratory strain. All populations showed significantly higher resistance to spinosad compared with the control as determined by comparing median lethal concentrations. Two populations from Shouguang and Liaocheng in Shandong Province were classified as having moderate and high levels of resistance to spinosad with a mean resistance ratio of 17.0 and 89.2, respectively. Our research indicates a widespread reduction in spinosad efficacy for controlling F. occidentalis field populations, and that resistance management strategies should be implemented as soon as practicable, to reduce the potential of progressive resistance development and loss of efficacy.
文摘Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor(GECAM)is a constellation with four instruments(launch date):GECAM-A/B(10 December 2020),GECAM-C(27 July 2022)and GECAM-D(13 March 2024),which are dedicated to monitoring gamma-ray transients in all-sky.The primary science objectives of GECAM include Gamma-Ray Bursts(GRBs),Soft Gamma-ray Repeaters(SGRs),high energy counterparts of Gravitation Wave(GW)and Fast Radio Burst(FRB),Solar Flares(SFLs),as well as Terrestrial Gamma-ray Flashes(TGFs)and Terrestrial Electron Beams(TEBs).A series of observations and research have been made since the launch of GECAM-A/B.GECAM observations provide new insights into these highenergy transients,demonstrating the unique role of GECAM in the“multi-wavelength,multi-messenger”era.
基金supported by the National Natural Science Foundation of China(T2225002,82273855 to Mingyue Zheng)Lingang Laboratory(LG202102-01-02 to Mingyue Zheng)+1 种基金the National Key Research and Development Program of China(2022YFC3400504 to Mingyue Zheng)the open fund of state key laboratory of Pharmaceutical Biotechnology,Nanjing University,China(KF-202301 to Mingyue Zheng).
文摘Aldehyde oxidase(AOX)is a molybdoenzyme that is primarily expressed in the liver and is involved in the metabolism of drugs and other xenobiotics.AOX-mediated metabolism can result in unexpected outcomes,such as the production of toxic metabolites and high metabolic clearance,which can lead to the clinical failure of novel therapeutic agents.Computational models can assist medicinal chemists in rapidly evaluating the AOX metabolic risk of compounds during the early phases of drug discovery and provide valuable clues for manipulating AOX-mediated metabolism liability.In this study,we developed a novel graph neural network called AOMP for predicting AOX-mediated metabolism.AOMP integrated the tasks of metabolic substrate/non-substrate classification and metabolic site prediction,while utilizing transfer learning from 13C nuclear magnetic resonance data to enhance its performance on both tasks.AOMP significantly outperformed the benchmark methods in both cross-validation and external testing.Using AOMP,we systematically assessed the AOX-mediated metabolism of common fragments in kinase inhibitors and successfully identified four new scaffolds with AOX metabolism liability,which were validated through in vitro experiments.Furthermore,for the convenience of the community,we established the first online service for AOX metabolism prediction based on AOMP,which is freely available at https://aomp.alphama.com.cn.
基金supported by the National Natural Science Foundation of China(Nos.21902022,81903501,21601028)Qingchuang Science and Technology Plan of Shandong Province(No.2021KJ054)+1 种基金the Natural Science Foundation of Shandong Province(Nos.ZR2018LB018,ZR2019QB026,ZR2022QB058,ZR2020KB014)Scientific Research Foundation of Dezhou University(Nos.30101905,30102708,30102701).
文摘Metal-organic frameworks(MOFs)functionalized with open metal sites(OMSs)have received widespread attention in various applications due to their fascinating electronic properties and unique interactions with guest molecules.However,rational tailoring of the coordination environment of metal nodes dur-ing the synthesis of MOFs remains a great challenge due to their tendency of saturated coordination with linkers.Herein,we reported the construction of three new MOFs featuring unsaturated Cu(Ⅱ)sites,namely[Cu(HCOO)(pzta)]_(n)(HL-1),{[Cu(PTA)0.5(pzta)(H_(2)O)]·2H_(2)O}_(n)(HL-2)and[Cu(NA)0.5(pzta)]_(n)(HL-3)(Hpzta=3-pyrazinyl-1,2,4-triazole;PTA=terephthalic acid;NA=1,4-naphthalene dicarboxylic acid),based on the mixed-linker strategy via specific selection of versatile Hpzta ligand and carboxylate ligands.Re-markably,the obtained MOFs exhibited excellent activity and good recyclability for the catalytic reduction of nitroaromatics under mild conditions(25℃and 1 atm).In particular,the complete conversion of 4-nitrophenol(4-NP)took only 30 s on HL-2,reaching a record-high TOF value compared with previously reported metal catalysts.The combined experimental and theoretical studies on HL-2 revealed that the open Cu site with positive-charged nature could improve the adsorption and subsequent electron trans-port between the substrates,and was responsible for the outstanding performance.This work shined lights on the further enhancement of performance for MOFs through rational OMSs construction.
基金supported by the National Natural Science Foundation of China(32001110)Training Program for Cultivating Highlevel Talents by the China Scholarship Council(2021lxjjw01)Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2021-KF-004)。
文摘Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state.
基金support from the National Natural Science Foundation of China(Nos.12274058 and 12104085)Taishan Scholars Program of Shandong Province(No.tsqn201812104)+2 种基金the Natural Science Foundation of Shandong Province(No.ZR2021QA008)the Qingchuang Science and Technology Plan of Shandong Province(No.2019KJJ017)the project of the Talent Introduction of Dezhou University(No.2021xjrc101).
文摘Adenosine triphosphate(ATP)is closely related to the pathogenesis of certain diseases,so the detection of trace ATP is of great significance to disease diagnosis and drug development.Graphene field-effect transistors(GFETs)have been proven to be a promising platform for the rapid and accurate detection of small molecules,while the Debye shielding limits the sensitive detection in real samples.Here,a three-dimensional wrinkled graphene field-effect transistor(3D WG-FET)biosensor for ultra-sensitive detection of ATP is demonstrated.The lowest detection limit of 3D WG-FET for analyzing ATP is down to 3.01 aM,which is much lower than the reported results.In addition,the 3D WG-FET biosensor shows a good linear electrical response to ATP concentrations in a broad range of detection from 10 aM to 10 pM.Meanwhile,we achieved ultra-sensitive(LOD:10 aM)and quantitative(range from 10 aM to 100 fM)measurements of ATP in human serum.The 3D WG-FET also exhibits high specificity.This work may provide a novel approach to improve the sensitivity for the detection of ATP in complex biological matrix,showing a broad application value for early clinical diagnosis and food health monitoring.
基金supported by the National Natural Science Foundation of China(Nos.21631003 and 22001015)the Fundamental Research Funds for the Central Universities(No.2050205)University of Science and Technology Beijing.
文摘Electrochemical CO_(2)reduction is a viable,economical,and sustainable method to transform atmospheric CO_(2)into carbon-based fuels and effectively reduce climate change and the energy crisis.Constructing robust catalysts through interface engineering is significant for electrocatalytic CO_(2)reduction(ECR)but remains a grand challenge.Herein,SnO2/Bi_(2)O_(2)CO_(3)heterojunction on N,S-codoped-carbon(SnO_(2)/BOC@NSC)with efficient ECR performance was firstly constructed by a facile synthetic strategy.When the SnO_(2)/BOC@NSC was utilized in ECR,it exhibits a large formic acid(HCOOH)partial current density(JHCOOH)of 86.7 mA·cm^(−2)at−1.2 V versus reversible hydrogen electrode(RHE)and maximum Faradaic efficiency(FE)of HCOOH(90.75%at−1.2 V versus RHE),respectively.Notably,the FEHCOOH of SnO_(2)/BOC@NSC is higher than 90%in the flow cell and the JHCOOH of SnO_(2)/BOC@NSC can achieve 200 mA·cm^(−2)at−0.8 V versus RHE to meet the requirements of industrialization level.The comparative experimental analysis and in-situ X-ray absorption fine structure reveal that the excellent ECR performance can be ascribed to the synergistic effect of SnO_(2)/BOC heterojunction,which enhances the activation of CO_(2)molecules and improves electron transfer.This work provides an efficient SnO_(2)-based heterojunction catalyst for effective formate production and offers a novel approach for the construction of new types of metal oxide heterostructures for other catalytic applications.
基金supported by the Key Program of National Natural Science Foundation of China(22133006)the National Natural Science Foundation of China(21771192,22301314)+1 种基金the Natural Science Foundation of Shandong Province(ZR2017ZB0315)the Program for Taishan Scholar of Shandong Province(ts201712019)。
文摘The universal synthesis of highly stable covalent organic frameworks(COFs)for ultra-sensitive and multi-component electrochemical detection in different scenarios remains a great challenge.Herein,a series of metallophthalocyanine-based twodimensional(2D)dioxin(DXI)-linked metalophthalocyanine(MPc)-n DXI-COFs(M=Ni,Zn;n=1,2)are afforded in high yield(80%-96%)by a facile trace-quinoline assisted one-pot condensation of tetracarbonitrile precursors.Powder X-ray diffraction and electron microscopy investigations disclose their lamellar texture 2D network with AA stacking mode.Experiments and calculation results elucidate that the 2DXI-linked MPc-2DXI-COFs provide the stronger built-in electronic field and more electrostatic/hydrogen bonding adsorption sites than DXI-linked MPc-DXI-COFs,and the lower electrode reaction Gibbs free energy and stronger adsorption of analytes at Ni Pc than Zn Pc unit,which grants Ni Pc-2DXI-COF excellent sensing properties for various analytes including neurotransmitters,organic pollutants,and heavy metal ions,with high sensitivity and low detection limit of 0.53 to 25.66 nM.Especially in binary and ternary systems and even in real-world conditions,simultaneous multi-component detection could be achieved.
基金Shandong Province Natural Science Foundation,China(ZR2020KB014,ZR2022QB206)the National Natural Science Foundation of China(22178001)+1 种基金Anhui Provincial Natural Science Foundation(2308085Y19)Research Project for Outstanding Youth of Department of Education of Anhui Province(2022AH030045).
文摘Gasification of furfural residue with coal can realize its efficient and clean utilization.But the high alkali metal content in furfural slag is easy to cause the corrosion of gasifier refractory.Two gasification coals with different silica alumina ratio and a furfural residue were selected in the study.The effects of furfural residue additions on corrosion of silica brick,corundum brick,high alumina brick and mullite brick were investigated by using XRD,SEM-EDS and Factsage Software,and the corrosion mechanism was analyzed.With increasing furfural residue addition,the permeability of the slags to high-aluminium-bearing refractories first decreases and then increases,while the permeability on silica brick shows a slight decrease trend.Leucite(KAlSi_(2)O_(6))with high-melting temperature is generated from the reaction of K_(2)O and SiO_(2)in slag with Al_(2)O_(3)in refractories after furfural residue is added,which hinders the infiltration of slag in refractories.Kaliophilite(KAlSiO_(4))of low-melting point is formed when K_(2)O content increases,and this contributes to the infiltration of slag in refractories.The acid-base reaction between slag and silica brick is distinctly occurred,more slag reacts with SiO_(2)in the silicon brick,resulting in a decrease in the amount of slag infiltrating into the silicon brick as furfural residue is added.The corrosion of silica brick is mainly caused by the acid-base reaction,while the corrosion of three alumina based refractory bricks of corundum,mullite and high alumina brick is determined by slag infiltration.A linear correlation between the percolation rate and slag viscosity is established,the slag permeability increases with decreasing viscosity,resulting in stronger permeability for the high Si/Al ratio slag with lower viscosity.
基金fundings from the National Natural Science Foundation of China (No. 51872173)Taishan Scholar Foundation of Shandong Province (No. tsqn201812068)+3 种基金Natural Science Foundation of Shandong Province (No. ZR2022JQ21)Higher School Youth Innovation Team of Shandong Province (No. 2019KJA013)Hong Kong Scholars Program (No. XJ2019042)Innovation and Technology Commission of the Hong Kong Special Administrative Region (No. ITC-CNERC14EG03)。
文摘Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified by cetyltrimethylammonium bromide(CTAB) and trimethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-trideca fluorooctyl) silane(FOTS) to increase the hydrophobicity of MXenes.The ammonia(NH_(3)) production rate and faradaic efficiency(FE) are improved from 37.62 to 54.01 μg h^(-1)mg_(cat)^(-1).and 5.5% to 18.1% at-0.7 V vs.RHE,respectively after surface modification.^(15)N isotopic labeling experiment confirms that nitrogen in produced ammonia originates from N_(2) in the electrolyte.The excellent NRR activity of surface hydrophobic MXenes is mainly due to surfactant molecules,which inhibit the entry of water molecules and the competitive HER,which have been verified by in situ FT-IR,DFT and molecular dynamics calculations.This strategy provides an ingenious method to design more active NRR electrocatalysts.
基金Shandong Medical Association Clinical Research Specialization(YXH2022ZX03231)。
文摘Objective:To analyze the effect of bortezomib combined with dexamethasone and lenalidomide in the treatment of multiple myeloma.Methods:60 cases of multiple myeloma patients admitted to our hospital from January 2022 to December 2023 were selected randomly,with 30 cases in each group.Bortezomib combined with dexamethasone was administered in the control group,and bortezomib combined with dexamethasone and lenalidomide was given to the observation group,and the treatment effect was analyzed.Results:After treatment,CD^(3+)and CD^(4+)of the observation group were higher than that of the control group,CD^(8+)was lower than that of the control group,and the total treatment efficiency was higher,which was statistically significant(P<0.05),and there was no difference in the total incidence of adverse reactions between the two groups(P>0.05).Conclusion:Bortezomib combined with dexamethasone and lenalidomide is effective in the treatment of multiple myeloma as it regulates the immune function and is safe,thus it can be promoted in clinical practice.