As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the trans...As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.展开更多
This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary la...This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.展开更多
Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species.Here,we implemented several spectral fitting methods to ...Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species.Here,we implemented several spectral fitting methods to retrieve tropospheric NO_(2),SO_(2),and HCHO from the ozone monitoring instrument(OMI),with radiative simulations providing necessary information on the interactions of scattered solar light within the atmosphere.We analyzed the spatial distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005-2017,especially in heavily polluted regions.We found significant decreasing trends in NO_(2) and SO_(2) since 2011 over most regions,despite varying temporal features and turning points.In contrast,an overall increasing trend was identified for tropospheric HCHO over these regions in recent years.Furthermore,generalized additive models were implemented to understand the driving forces of air quality trends in China and assess the effectiveness of emission controls.Our results indicated that although meteorological parameters,such as wind,water vapor,solar radiation and temperature,mainly dominated the day-to-day and seasonal fluctuations in air pollutants,anthropogenic emissions played a unique role in the long-term variation in the ambient concentrations of NO_(2),SO_(2),and HCHO in the past 13 years.Generally,recent declines in NO_(2) and SO_(2) could be attributed to emission reductions due to effective air quality policies,and the opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound(VOC)emissions.展开更多
The Beijing-Tianjin-Hebei (BTH) region is one of the most heavily polluted regions in China, with both high PM2.5 concentrations and a high population density. A quantitative source-receptor relationship can provide...The Beijing-Tianjin-Hebei (BTH) region is one of the most heavily polluted regions in China, with both high PM2.5 concentrations and a high population density. A quantitative source-receptor relationship can provide valuable insights that can inform effective emission control strategies. Both source appor- tionment (SA) and source sensitivity (SS) can provide such information from different perspectives. In this study, both methods are applied in northern China to identify the most significant emission cate- gories and source regions for PMz5 exposure in BTH in 2013. Despite their differences, both models show similar distribution patterns for population and simulated PM2.5 concentrations, resulting in overall high PM2.5 exposure values (approximately 110 Ixg/m3) and particularly high exposure values during the win- ter (approximately 200 ktg/m3). Both methods show that local emissions play a dominant role (70%), with some contribution from surrounding provinces (e.g., Shandong) via regional transport. The two methods also agree on the priority of local emission controls: both identify industrial, residential, and agricultural emissions as the top three categories that should be controlled locally. In addition, the effect of control- ling agricultural ammonia emissions is approximately doubled when the co-benefits of reducing nitrate are considered. The synthesis of SA and SS for addressing specific categories of emissions provides a quantitative basis for the development of emission control strategies and policies for controlling PM2.5 in China.展开更多
Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs...Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.展开更多
Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of th...Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.展开更多
Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96-76 m, 14.3-14.0 ka cal BP) and 1B (58-45 m, 11...Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96-76 m, 14.3-14.0 ka cal BP) and 1B (58-45 m, 11.5-11.2 ka cal BP), respectively. Ages of non-reef sea-level indicators from the Sunda Shelf, the East China Sea and Yellow Sea for these two intervals are unreliable because of the well-documented radiocarbon ( 14C) plateau, but their vertical clustering corresponds closely with MWP-1A and 1B depth ranges. Close correlation of the revised sea-level curve with Greenland ice-core data suggests that the 14C plateau may be related to oceanographic-atmospheric changes due to rapid sea-level rise, fresh-water input, and impaired ocean circulation. MWP-1A appears to have occurred at the end of Blling Warm Transition, suggesting that the rapid sea-level rise may have resulted from lateral heat transport from low to high-latitude regions and subsequent abrupt ice-sheet collapses in both North America-Europe and Antarctica. An around 70 mm a -1 transgression during MWP-1A may have increased freshwater discharge to the North Atlantic by as much as an order of magnitude, thereby disturbing thermohaline circulation and initiating the Older Dryas global cooling.展开更多
The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical ...The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.展开更多
The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal componen... The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.展开更多
A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment comp...A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.展开更多
How the Hadley circulation changes in response to global climate change and how its change impacts upon regional and global climates has generated a lot of interest in the literature in the past few years. In this pap...How the Hadley circulation changes in response to global climate change and how its change impacts upon regional and global climates has generated a lot of interest in the literature in the past few years. In this paper, consistent and statistically significant poleward expansion of the Hadley circulation in the past few decades is demonstrated, using independent observational datasets as proxy measures of the Hadley circulation. Both observational outgoing longwave radiation and precipitation datasets show an annual average total poleward expansion of the Hadley cells of about 3.6° latitude. Sea level pressure from observational and reanalysis datasets show smaller magnitudes of poleward expansion, of about 1.2° latitude. Ensemble general circulation model simulations forced by observed time-varying sea surface temperatures were found to generate a total poleward expansion of about 1.23°latitude. Possible mechanisms behind the changes in the horizontal extent of the Hadley circulation are discussed.展开更多
利用中国160个台站和NCEP再分析资料,引入综合分析气候反馈的统计方法——广义平衡反馈方法(GEFA),结合EOF、相关合成分析,探讨2009/2010年中国冬季气温异常型的成因。结果表明:2009/2010年中国冬季气温出现的东北冷西南暖分布型与同期...利用中国160个台站和NCEP再分析资料,引入综合分析气候反馈的统计方法——广义平衡反馈方法(GEFA),结合EOF、相关合成分析,探讨2009/2010年中国冬季气温异常型的成因。结果表明:2009/2010年中国冬季气温出现的东北冷西南暖分布型与同期海温异常及其相联系的大气环流异常有密切的关系。其中赤道中东太平洋海温异常的El Ni o型和赤道大西洋海温异常"正-负-正"三极型模态对2009/2010年中国冬季气温东北冷西南暖分布型有显著的强迫作用。上述海温异常型影响了大气环流异常,中高纬度地面偏北气流将冷空气输送到华北东北地区,致使该地区冬季气温偏低,同时中纬度西风增强,极地冷空气被迫盘踞在高纬,不能影响到西南地区,导致西南地区较常年更暖。展开更多
Major volcanic eruptions(MVEs)have attracted increasing attention from the scientific community.Previous studies have explored the climatic impact of MVEs over the past two millennia.However,proxy-based reconstruction...Major volcanic eruptions(MVEs)have attracted increasing attention from the scientific community.Previous studies have explored the climatic impact of MVEs over the past two millennia.However,proxy-based reconstructions and climate model simulations indicate divergent responses of global and China’s regional climates to MVEs.Here,we used multiple data from observations,reconstructions,simulations,and assimilations to summarize the historical facts of MVEs,the characteristics and mechanisms of their climatic impact,and directions for future research.We reviewed volcanic datasets and determined intensive MVE periods;these periods corresponded to the years 530–700,1200‒1460,and 1600‒1840 CE.After tropical MVEs,a substantial cooling effect is observed throughout the globe and China on the interannual-interdecadal time scales but an inconsistent cooling magnitude is detected between reconstructions and simulations.In the first summer after tropical MVEs,a decrease in global and monsoonal precipitation is observed.In reconstructions and simulations,an increased precipitation is seen for the Yangtze River Basin,while large uncertainties in precipitation changes are present for other regions of China.Decadal drought can be induced by frequent eruptions and volcanism superimposed on low solar irradiation and internal variability.MVEs affect climate directly through the radiative effect and indirectly by modulating internal variability,such as the El Niño‒Southern Oscillation(ENSO)and Atlantic Multidecadal Oscillation(AMO).However,changes in the phase,amplitude,and periodicity of ENSO and AMO after MVEs and the associated mechanisms remain controversial,which could account for model-reconstruction disagreements.Moreover,other internal variability,uncertainties in reconstruction methods and aerosol‒climate models,and climate background may also induce model-reconstruction disagreements.Knowledge gaps and directions for future research are also discussed.展开更多
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its s...NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/wea展开更多
A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results...A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results from the experiments show good agreement with physical reality. Besides, some of the results are illuminating. Together with the first paper, it is concluded that MSPAS is a simple but effective model, and it is practically valuable in the research work of desertification control and reforestation in China.展开更多
Plate tectonics plays a critical role in modulating atmospheric CO_(2)concentration on the geological timescale(≥106year).A growing consensus on tectonic and Earth’s CO_(2)history in the Cenozoic and deeper time pro...Plate tectonics plays a critical role in modulating atmospheric CO_(2)concentration on the geological timescale(≥106year).A growing consensus on tectonic and Earth’s CO_(2)history in the Cenozoic and deeper time provides solid restrictions and standards for testing tectonic carbon processes against global measurements.Despite this,modeling the causal relationship between tectonic events and atmospheric CO_(2)levels remains a challenge.We examine the current state of the global tectonic CO_(2)research and suggest a conceptual workflow for numerical experiments that integrates plate tectonics and deep carbon dynamics.Future tectonic carbon cycle modeling should include at least four modules:(1)simulation of carbon-carrying processes,such as carbon ingassing and outgassing at the scale of minerals;(2)calculation of CO_(2)fluxes in tectonic settings like subduction,mantle plume,and plate rifting;(3)reconstruction of carbon cycling within the plates-scale tectonic scenario,particularly involving the processes of supercontinent convergence and dispersion;and(4)comparison with atmospheric CO_(2)history data and iterations,aiming to find the coincidental link between different tectonic carbon fluxes and climate changes.According to our analysis,the recent advancements in each of the four modules have paved the path for a more general assembly.We envision that the large variety of carbon transportation parameters across more than ten orders of magnitude in both time and space is the primary technical hurdle in simulating tectonic carbon dynamics.We propose a boundary-condition-connected approach for simulating the global carbon cycle to realize carbon exchange between the solid earth and surface spheres.展开更多
The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the...The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific E1 Nifio (CP-E1 Nifio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific E1 Nifio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-E1 Nifio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the reversed zonal advective feedback can cause the phase transition of CP-EI Nifio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.展开更多
基金This research was sponsored by the National Key Program for Developing Basic Sciences of China(No.G1999043400)the National Natural Science Foundation of China(Grant Nos.40205016 and 40165001).
文摘As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.
基金supported by the National Natural Science Foundation of China (Grant No.40275004)the State Key Laboratory of Atmosphere Physics and Chemistry,and the City University of Hong Kong(Grant No.8780046)the City University of Hong Kong Strategic Research(Grant No.7001038)
文摘This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.
基金supported by grants from the National Natural Science Foundation of China(Nos.41722501,91544212,51778596,41575021,41875043,and 41977184)the National Key Research and Development Program of China(Nos.2018YFC0213104,2017YFC0210002,and 2016YFC0203302)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA23020301)the National Key Project for Causes and Control of Heavy Air Pollution(Nos.DQGG0102 and DQGG0205)the Major Projects of High Resolution Earth Observation Systems of National Science and Technology(05-Y30B01-9001-19/20-1).
文摘Abundances of a range of air pollutants can be inferred from satellite UV-Vis spectroscopy measurements by using the unique absorption signatures of gas species.Here,we implemented several spectral fitting methods to retrieve tropospheric NO_(2),SO_(2),and HCHO from the ozone monitoring instrument(OMI),with radiative simulations providing necessary information on the interactions of scattered solar light within the atmosphere.We analyzed the spatial distribution and temporal trends of satellite-observed air pollutants over eastern China during 2005-2017,especially in heavily polluted regions.We found significant decreasing trends in NO_(2) and SO_(2) since 2011 over most regions,despite varying temporal features and turning points.In contrast,an overall increasing trend was identified for tropospheric HCHO over these regions in recent years.Furthermore,generalized additive models were implemented to understand the driving forces of air quality trends in China and assess the effectiveness of emission controls.Our results indicated that although meteorological parameters,such as wind,water vapor,solar radiation and temperature,mainly dominated the day-to-day and seasonal fluctuations in air pollutants,anthropogenic emissions played a unique role in the long-term variation in the ambient concentrations of NO_(2),SO_(2),and HCHO in the past 13 years.Generally,recent declines in NO_(2) and SO_(2) could be attributed to emission reductions due to effective air quality policies,and the opposite trends in HCHO may urge the need to control anthropogenic volatile organic compound(VOC)emissions.
基金supported by the National Natural Science Foundation of China(41625020 and 41571130035)the Ford Company, U.S.DOE grant #DE-SC0006695 at NCSU+1 种基金China's Special Scientific Research Funds for Environment Protection Commonweal Section(201409027)a DOE Office of Science User Facility supported by the Office of Science of the U.S.Department of Energy (DE-AC02-05CH11231)
文摘The Beijing-Tianjin-Hebei (BTH) region is one of the most heavily polluted regions in China, with both high PM2.5 concentrations and a high population density. A quantitative source-receptor relationship can provide valuable insights that can inform effective emission control strategies. Both source appor- tionment (SA) and source sensitivity (SS) can provide such information from different perspectives. In this study, both methods are applied in northern China to identify the most significant emission cate- gories and source regions for PMz5 exposure in BTH in 2013. Despite their differences, both models show similar distribution patterns for population and simulated PM2.5 concentrations, resulting in overall high PM2.5 exposure values (approximately 110 Ixg/m3) and particularly high exposure values during the win- ter (approximately 200 ktg/m3). Both methods show that local emissions play a dominant role (70%), with some contribution from surrounding provinces (e.g., Shandong) via regional transport. The two methods also agree on the priority of local emission controls: both identify industrial, residential, and agricultural emissions as the top three categories that should be controlled locally. In addition, the effect of control- ling agricultural ammonia emissions is approximately doubled when the co-benefits of reducing nitrate are considered. The synthesis of SA and SS for addressing specific categories of emissions provides a quantitative basis for the development of emission control strategies and policies for controlling PM2.5 in China.
基金supported by the Tianjin Fundamental Research Program of the Tianjin Committee of Science and Technology (Grant No. 10JCYBJC050800)the National Special Science and Technology Program for Non-Profit Industry of the Ministry of Environmental Protection (Grant No. 200909022)+2 种基金the 973 Program (Grant No. 2011CB403402)the National Natural Science Foundation of China (NSFC) (Grant No. 40875001)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2008Z011)
文摘Tianjin is the third largest megacity and the fastest growth area in China,and consequently faces the problems of surface ozone and haze episodes.This study measures and characterizes volatile organic compounds (VOCs),which are ozone precursors,to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin,China during the HaChi (Haze in China) summer campaign in 2009.A total of 107 species of ambient VOCs were detected,and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv,respectively.Of those,51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization.The identified sources of VOCs were significantly related to vehicular activities,which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin.Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas,although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%).We conclude that controlling vehicle emissions should be a top priority for VOC reduction,and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life,especially in suburban areas.
基金National Basic Research Program of China, No.2005CB422006 National Natural Science Foundation of China, No.90202012 No.40561002
文摘Taking the Lhasa River Basin above Lhasa hydrological station in Tibetan Plateau as a study area, the characteristics of the annual and monthly mean runoff during 1956-2003 were analyzed, based on the hydro-data of the two hydrological stations (Lhasa and Tanggya) and the meteorological data of the three meteorological stations (Damxung, Lhasa and Tanggya). The trends and the change points of runoff and climate from 1956 to 2003 were detected using the nonparametric Mann-Kendall test and Pettitt-Mann-Whitney change-point statistics. The correlations between runoff and climate change were analyzed using multiple linear regression. The major results could be summarized as follows: (1) The annual mean runoff during the last 50 years is characterized by a great fluctuation and a positive trend with two change points (around 1970 and the early 1980s), after which the runoff tended to increase and was increasing intensively in the last 20 years. Besides, the monthly mean runoff with a positive trend is centralized in winter half-year (November to April) and some other months (May, July and September). (2) The trends of the climate change in the study area are generally consistent with the trend of the runoff, but the leading climate factors which aroused the runoff variation are distinct. Precipitation is the dominant factor influencing the annual and monthly mean runoff in summer half year, while temperature is the primary factor in winter season.
基金Special thanks to Woods Hole Oceanographic Institute's post-doc scholarship support to Liu,and many thanks to Jeffrey Donnelly a and Neal Driscoll for discussion and encouragement.
文摘Re-evaluation of the post-glacial sea level derived from the Barbados coral-reef borings suggests slightly revised depth ranges and timing of melt-water pulses MWP-1A (96-76 m, 14.3-14.0 ka cal BP) and 1B (58-45 m, 11.5-11.2 ka cal BP), respectively. Ages of non-reef sea-level indicators from the Sunda Shelf, the East China Sea and Yellow Sea for these two intervals are unreliable because of the well-documented radiocarbon ( 14C) plateau, but their vertical clustering corresponds closely with MWP-1A and 1B depth ranges. Close correlation of the revised sea-level curve with Greenland ice-core data suggests that the 14C plateau may be related to oceanographic-atmospheric changes due to rapid sea-level rise, fresh-water input, and impaired ocean circulation. MWP-1A appears to have occurred at the end of Blling Warm Transition, suggesting that the rapid sea-level rise may have resulted from lateral heat transport from low to high-latitude regions and subsequent abrupt ice-sheet collapses in both North America-Europe and Antarctica. An around 70 mm a -1 transgression during MWP-1A may have increased freshwater discharge to the North Atlantic by as much as an order of magnitude, thereby disturbing thermohaline circulation and initiating the Older Dryas global cooling.
基金supported in part by NSF Grant(ATM-0727668and AGS-1061998)NOAA Grant(NA08OAR4310885)+3 种基金NASA Grants(NNX08AI74G,NNX08AI76G,and NNX09AF41G)F.Zheng is supported by the National Basic Research Program of China(GrantNos.2012CB417404and2012CB955202)the Natural Science Foundation of China(Grant No.41075064)Pei is additionally supported by China Scholarship Coun-cil(CSC) with the Ocean University of China,Qingdao,China
文摘The E1 Nifio-Southern Oscillation (ENSO) is emphasized the roles of wind stress and heat flux environmental forcing to the ocean; its effect and modulated by many factors; most previous studies have in the tropical Pacific. Freshwater flux (FWF) is another the related ocean salinity variability in the ENSO region have been of increased interest recently. Currently, accurate quantifications of the FWF roles in the climate remain challenging; the related observations and coupled ocean-atmosphere modeling involve large elements of uncertainty. In this study, we utilized satellite-based data to represent FWF-induced feedback in the tropical Pacific climate system; we then incorporated these data into a hybrid coupled ocean-atmosphere model (HCM) to quantify its effects on ENSO. A new mechanism was revealed by which interannual FWF forcing modulates ENSO in a significant way. As a direct forcing, FWF exerts a significant influence on the ocean through sea surface salinity (SSS) and buoyancy flux (QB) in the western-central tropical Pacific. The SSS perturbations directly induced by ENSO-related interannual FWF variability affect the stability and mixing in the upper ocean. At the same time, the ENSO-induced FWF has a compensating effect on heat flux, acting to reduce interannual Qs variability during ENSO cycles. These FWF-induced processes in the ocean tend to modulate the vertical mixing and entrainment in the upper ocean, enhancing cooling during La Nifia and enhancing warming during E1 Nifio, respectively. The interannual FWF forcing-induced positive feedback acts to enhance ENSO amplitude and lengthen its time scales in the tropical Pacific coupled climate system.
基金sponsored by the National Natural Science Foundation of China under Grant No.400750112001 PIA 20026 the National Key program for Developing Basic Sciences:CHeRES(G 1998040907).
文摘 The characteristics of helicity in a hurricane are presented by calculating the MM5 model output in addition to theoretical analysis. It is found that helicity in a hurricane mainly depends on its horizontal component, whose magnitude is about 100 to 1000 times larger than its vertical component. It is also found that helicity is approximately conserved in the hurricane. Since the fluid has the intention to adjust the wind shear to satisfy the conservation of helicity, the horizontal vorticity is even larger than the vertical vorticity, and the three-dimensional vortices slant to the horizontal plane except in the inner eye. There are significant horizontal vortices and inhomogeneous helical flows in the hurricane. The formation of the spiral rainband is discussed by using the law of horizontal helical flows. It is closely related to the horizontal strong vortices and inhomogeneous helical flows.
基金sponsored by the National Natural Science Foundation of China under Grant Nos.49975014,40275018,and 40333025
文摘A limited-area primitive equation model is used to study the role of the β-effect and a uniform current on tropical cyclone (TC) intensity. It is found that TC intensity is reduced in a non-quiescent environment compared with the case of no uniform current. On an f-plane, the rate of intensification of a tropical cyclone is larger than that of the uniform flow. A TC on a β-plane intensifies slower than one on an f-plane. The main physical characteristic that distinguishes the experiments is the asymmetric thermodynamic (including convective) and dynamic structures present when either a uniform flow or β-effect is introduced. But a fairly symmetric TC structure is simulated on an f-plane. The magnitude of the warm core and the associated subsidence are found to be responsible for such simulated intensity changes. On an f-plane, the convection tends to be symmetric, which results in strong upper-level convergence near the center and hence strong forced subsidence and a very warm core. On the other hand, horizontal advection of temperature cancels part of the adiabatic heating and results in less warming of the core, and hence the TC is not as intense. This advective process is due to the tilt of the vortex as a result of the β-effect. A similar situation occurs in the presence of a uniform flow. Thus, the asymmetric horizontal advection of temperature plays an important role in the temperature distribution. Dynamically, the asymmetric angular momentum (AM) flux is very small on an f-plane throughout the troposphere. However, the total AM exports at the upper levels for a TC either on a β-plane or with a uniform flow environment are larger because of an increase of the asymmetric as well as symmetric AM export on the plane at radii >450 km, and hence there is a lesser intensification.
基金supported by the National Natural Science Foundation of China (40875042, 41025018)the National Basic Research Program of China (2007CB411801)+2 种基金the Ministry of Education of China (20070001002)J Liu is supported by the National Basic Research Program of China(2006CB403605)NSFC (40876099)
文摘How the Hadley circulation changes in response to global climate change and how its change impacts upon regional and global climates has generated a lot of interest in the literature in the past few years. In this paper, consistent and statistically significant poleward expansion of the Hadley circulation in the past few decades is demonstrated, using independent observational datasets as proxy measures of the Hadley circulation. Both observational outgoing longwave radiation and precipitation datasets show an annual average total poleward expansion of the Hadley cells of about 3.6° latitude. Sea level pressure from observational and reanalysis datasets show smaller magnitudes of poleward expansion, of about 1.2° latitude. Ensemble general circulation model simulations forced by observed time-varying sea surface temperatures were found to generate a total poleward expansion of about 1.23°latitude. Possible mechanisms behind the changes in the horizontal extent of the Hadley circulation are discussed.
文摘利用中国160个台站和NCEP再分析资料,引入综合分析气候反馈的统计方法——广义平衡反馈方法(GEFA),结合EOF、相关合成分析,探讨2009/2010年中国冬季气温异常型的成因。结果表明:2009/2010年中国冬季气温出现的东北冷西南暖分布型与同期海温异常及其相联系的大气环流异常有密切的关系。其中赤道中东太平洋海温异常的El Ni o型和赤道大西洋海温异常"正-负-正"三极型模态对2009/2010年中国冬季气温东北冷西南暖分布型有显著的强迫作用。上述海温异常型影响了大气环流异常,中高纬度地面偏北气流将冷空气输送到华北东北地区,致使该地区冬季气温偏低,同时中纬度西风增强,极地冷空气被迫盘踞在高纬,不能影响到西南地区,导致西南地区较常年更暖。
基金supported by the National Natural Science Foundation of China(Grant Nos.42130604,42105044,41971108,42111530182&41971021)the Consultation and Review Project of Chinese Academy of Sciences(Grant No.2022-ZW04-A-010)+3 种基金the Swedish STINT(Grant No.CH2019-8377)the Future Earth Global Secretariat Hub Chinathe International Research Center of Big Data for Sustainable Development Goals(Grant No.CBAS2022GSP08)the Priority Academic Program Development of Jiangsu Higher Education Institutions(Grant No.164320H116).
文摘Major volcanic eruptions(MVEs)have attracted increasing attention from the scientific community.Previous studies have explored the climatic impact of MVEs over the past two millennia.However,proxy-based reconstructions and climate model simulations indicate divergent responses of global and China’s regional climates to MVEs.Here,we used multiple data from observations,reconstructions,simulations,and assimilations to summarize the historical facts of MVEs,the characteristics and mechanisms of their climatic impact,and directions for future research.We reviewed volcanic datasets and determined intensive MVE periods;these periods corresponded to the years 530–700,1200‒1460,and 1600‒1840 CE.After tropical MVEs,a substantial cooling effect is observed throughout the globe and China on the interannual-interdecadal time scales but an inconsistent cooling magnitude is detected between reconstructions and simulations.In the first summer after tropical MVEs,a decrease in global and monsoonal precipitation is observed.In reconstructions and simulations,an increased precipitation is seen for the Yangtze River Basin,while large uncertainties in precipitation changes are present for other regions of China.Decadal drought can be induced by frequent eruptions and volcanism superimposed on low solar irradiation and internal variability.MVEs affect climate directly through the radiative effect and indirectly by modulating internal variability,such as the El Niño‒Southern Oscillation(ENSO)and Atlantic Multidecadal Oscillation(AMO).However,changes in the phase,amplitude,and periodicity of ENSO and AMO after MVEs and the associated mechanisms remain controversial,which could account for model-reconstruction disagreements.Moreover,other internal variability,uncertainties in reconstruction methods and aerosol‒climate models,and climate background may also induce model-reconstruction disagreements.Knowledge gaps and directions for future research are also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos. 40633018 and 40675036)
文摘NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called 〈 Q1 〉) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of 〈 Q1 〉 and its changing trend are dramatic over QXP in the summer. There are three strong centers of 〈 Q1 〉 over the south side of QXP with obvious differences in the amount of yearly precipitation and the number of heat sinks predominate in the arid and semi-arid regions of northwest China (NWC), beside the northern QXP with an obvious higher intensity in years with less precipitation. (2) In the summer, the variation of the heat source's vertical structure is obviously different between greater and lesser precipitation years in eastern northwest China (ENWC). The narrow heat sink belt forms between the northeast QXP and the southwestern part of Lake Baikal. In July and August of greater precipitation years, the heating center of the eastern QXP stays nearly over 35°N, and at 400 hPa of the eastern QXP, the strong upward motion of the heating center constructs a closed secondary vertical circulation cell over the northeast QXP (40~ 46~N), which is propitious to add precipitation over the ENWC. Otherwise, the heating center shifts to the south of 30°N and disappears in July and August of lesser precipitation years, an opposite secondary circulation cell forms over the northeast QXP, which is a disadvantage for precipitation. Meanwhile, the secondary circulation cell in years with more or less precipitation over the ENWC is also related to the heat source over the Lake Baikal. (3) The vertical structure of the heat source over the western QXP has obvious differences between greater and lesser precipitation years in western northwest China in June and July. The strong/weak heat source over the western QXP produces relatively strong/wea
基金the National Natural Science Foundation of China (Grant No. 40275004) the State Key Laboratory of Atmosphere Physics and Chemistry, and the City University of Hong Kong Grant 8780046 the City University of Hong Kong Strategic Research (Grant No.7001038).
文摘A series of sensitivity tests are performed to test the stability and sensibility of the Modified Soil-Plant-Atmosphere Scheme (MSPAS), which was wholly introduced in a previous paper. The numerical simulation results from the experiments show good agreement with physical reality. Besides, some of the results are illuminating. Together with the first paper, it is concluded that MSPAS is a simple but effective model, and it is practically valuable in the research work of desertification control and reforestation in China.
基金supported by the National Natural Science Foundation of China(Grant Nos.41888101 and 41625016)XPLORER PRIZE。
文摘Plate tectonics plays a critical role in modulating atmospheric CO_(2)concentration on the geological timescale(≥106year).A growing consensus on tectonic and Earth’s CO_(2)history in the Cenozoic and deeper time provides solid restrictions and standards for testing tectonic carbon processes against global measurements.Despite this,modeling the causal relationship between tectonic events and atmospheric CO_(2)levels remains a challenge.We examine the current state of the global tectonic CO_(2)research and suggest a conceptual workflow for numerical experiments that integrates plate tectonics and deep carbon dynamics.Future tectonic carbon cycle modeling should include at least four modules:(1)simulation of carbon-carrying processes,such as carbon ingassing and outgassing at the scale of minerals;(2)calculation of CO_(2)fluxes in tectonic settings like subduction,mantle plume,and plate rifting;(3)reconstruction of carbon cycling within the plates-scale tectonic scenario,particularly involving the processes of supercontinent convergence and dispersion;and(4)comparison with atmospheric CO_(2)history data and iterations,aiming to find the coincidental link between different tectonic carbon fluxes and climate changes.According to our analysis,the recent advancements in each of the four modules have paved the path for a more general assembly.We envision that the large variety of carbon transportation parameters across more than ten orders of magnitude in both time and space is the primary technical hurdle in simulating tectonic carbon dynamics.We propose a boundary-condition-connected approach for simulating the global carbon cycle to realize carbon exchange between the solid earth and surface spheres.
基金supported by the National Basic Research Program of China(973Program:2012CB955604)National Natural Science Foundation of China(Nos.40975038and40830106)+5 种基金the CMA Program(GYHY200906008)the financial support provided by the China Scholarship Counciljointly supported by the 973 Program of China(2010CB950404)DOE grant DE-SC0005110National Science Foundation(NSF)grants ATM1034798NOAA grand NA10OAR4310200
文摘The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific E1 Nifio (CP-E1 Nifio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific E1 Nifio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-E1 Nifio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the reversed zonal advective feedback can cause the phase transition of CP-EI Nifio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.