The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a clo...The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a cloud-based cyberphysical-social systems(CPSS) framework aiming at synergizing connected automated driving. This study first introduces the CPSS and ACP-based intelligent machine systems. Then the parallel driving is proposed in the cyber-physical-social space,considering interactions among vehicles, human drivers, and information. Within the framework, parallel testing, parallel learning and parallel reinforcement learning are developed and concisely reviewed. Development on intelligent horizon(iHorizon)and its applications are also presented towards parallel horizon.The proposed parallel driving offers an ample solution for achieving a smooth, safe and efficient cooperation among connected automated vehicles with different levels of automation in future road transportation systems.展开更多
Magnesium is one of the largely available elements in the earth’s crust. It has a low structural density with high specific strength. This unique material property has forced an increase in the use of magnesium and i...Magnesium is one of the largely available elements in the earth’s crust. It has a low structural density with high specific strength. This unique material property has forced an increase in the use of magnesium and its alloys in various applications pertaining to industrial sector,automobiles, aerospace and biomedical. Since magnesium is a highly reactive metal, it is prone to higher rate of corrosion as compared to its counterparts. Thus, it is essential to analyze the corrosion behavior of magnesium and its alloys in its applications. An appropriate process is to be followed in the design and development of magnesium alloys which overcome the limitations of magnesium and enhance the desired material properties in accordance to their applications. This review paper summarizes the importance of magnesium and its material properties. The influence of various alloying elements on the mechanical properties of magnesium is reviewed. The broad classification of Mg alloys and their behavioral trends are detailed. The corrosion behavior of magnesium and the influence of corrosion products on the material characteristics of magnesium, in aqueous medium, are discussed. The manufacturing techniques of magnesium alloys along with the secondary techniques are also covered. The various applications and the limitations of magnesium in these applications are covered. A complete section is dedicated towards detailing the recent trends of magnesium(Mg) alloys, i.e., the biodegradable nature and applications of Mg alloys. The influence of biocorrosion on Mg alloys and techniques to overcome it have been deliberated. This paper provides a thorough review on recent developments of magnesium with respect to engineering applications.展开更多
In present-day highly-automated vehicles, there are occasions when the driving system disengages and the human driver is required to take-over. This is of great importance to a vehicle's safety and ride comfort. I...In present-day highly-automated vehicles, there are occasions when the driving system disengages and the human driver is required to take-over. This is of great importance to a vehicle's safety and ride comfort. In the U.S state of California, the Autonomous Vehicle Testing Regulations require every manufacturer testing autonomous vehicles on public roads to submit an annual report summarizing the disengagements of the technology experienced during testing. On 1 January 2016,seven manufacturers submitted their first disengagement reports:Bosch, Delphi, Google, Nissan, Mercedes-Benz, Volkswagen, and Tesla Motors. This work analyses the data from these disengagement reports with the aim of gaining abetter understanding of the situations in which a driver is required to takeover, as this is potentially useful in improving the Society of Automotive Engineers(SAE) Level 2 and Level 3 automation technologies.Disengagement events from testing are classified into different groups based on attributes and the causes of disengagement are investigated and compared in detail. The mechanisms and time taken for take-over transition occurred in disengagements are studied. Finally, recommendations for OEMs, manufacturers, and government organizations are also discussed.展开更多
Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowl...Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.展开更多
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ...The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.展开更多
Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The ...Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The experimental pull-out test specimens were prepared using cement mortar material,and a relationship between the pull-out strength of the bolt and the uniaxial compressive strength(UCS)of cement mortar material specimen was established.The locations of crack developed in the pull-out process were identified using the acoustic emission(AE)technique.The pull-out test was reproduced using 2D Particle Flow Code(PFC^(2D))with calibrated parameters.The experimental results show that the axial displacement of the cement mortar material at the peak load during the test was approximately 5 mm for cement-based grout of all strength.In contrast,the peak load of the bolt increased with the UCS of the confining medium.Under peak load,cracks propagated to less than one half of the anchorage length,indicating a lag between crack propagation and axial bolt load transmission.The simulation results show that the dilatation between the bolt and the rock induced cracks and extended the force field along the anchorage direction;and,it was identified as the major contributing factor for the pull-out failure of rock bolt.展开更多
Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developmen...Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.展开更多
The study of the critical zones(CZs) of the Earth link the composition and function of aboveground vegetation with the characteristics of the rock layers, providing a new way to study how the unique rock and soil cond...The study of the critical zones(CZs) of the Earth link the composition and function of aboveground vegetation with the characteristics of the rock layers, providing a new way to study how the unique rock and soil conditions in karst regions affect the aboveground vegetation. Based on survey results of the rocks, soils and vegetation in the dolomite and limestone distribution areas in the karst area of central Guizhou, it was found that woody plant cover increases linearly with the number of cracks with a width of more than 1 mm, while the cover of herbaceous plants shows the opposite trend(p<0.01). The dolomite distribution area is characterized by undeveloped crevices, and the thickness of the soil layer is generally less than 20 cm, which is suitable for the distribution of herbaceous plants with shallow roots. Due to the development of crevices in the limestone distribution area, the soil is deeply distributed through the crevices for the deep roots of trees, which leads to a diversified species composition and a complicated structure in the aboveground vegetation. Based on moderate resolution imaging spectroradiometer(MODIS) remote sensing data from 2001 to 2010, the normalized differentiated vegetation index(NDVI) and annual net primary productivity(NPP) results for each phase of a 16-day interval further indicate that the NDVI of the limestone distribution area is significantly higher than that in the dolomite distribution area, but the average annual NPP is the opposite. The results of this paper indicate that in karst CZs, the lithology determines the structure and distribution of the soil, which further determines the cover of woody and herbaceous plants in the aboveground vegetation. Although the amount of soil in the limestone area may be less than that in the dolomite area, the developed crevice structure is more suitable for the growth of trees with deep roots, and the vegetation activity is strong. At present, the treatment of rocky desertification in karst regions needs to fully consider the rock-s展开更多
Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring...Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization.The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation,the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner.The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions.展开更多
The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases(CC) were conducted previously.These cartridges were hlled with commercial off-...The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases(CC) were conducted previously.These cartridges were hlled with commercial off-the-shelf(COTS) double based(DB) propellant(Bulls Eye)and were loaded in a hot chamber.The thermal explosion temperature is of great significance to both weapon designers and safety inspectors as it provides the operational limit and safe operating temperature.For CC under test,it was found that the cook-off temperatures of this propellant were encountered with the heat transfer profile of the simulated gun barrel between 151.4 ℃ and 153.4 ℃,with a reaction occurring in less than300 s after the round was chambered.Usefully,each experiment was found to be consistent and repeatable.展开更多
The combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change.Yet,the risk of urban overheating can be mitigated b...The combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change.Yet,the risk of urban overheating can be mitigated by urban green-blue-grey infrastructure(GBGI),such as parks,wetlands,and engineered greening,which have the potential to effectively reduce summer air temperatures.Despite many reviews,the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear.This systematic literature review synthesizes the evidence base for heat mitigation and related co-benefits,identifies knowledge gaps,and proposes recommendations for their implementation to maximize their benefits.After screening 27,486 papers,202 were reviewed,based on 51 GBGI types categorized under 10 main divisions.Certain GBGI(green walls,parks,street trees)have been well researched for their urban cooling capabilities.However,several other GBGI have received negligible(zoological garden,golf course,estuary)or minimal(private garden,allotment)attention.The most efficient air cooling was observed in botanical gardens(5.0±3.5℃),wetlands(4.9±3.2℃),green walls(4.1±4.2℃),street trees(3.8±3.1℃),and vegetated balconies(3.8±2.7℃).Under changing climate conditions(2070–2100)with consideration of RCP8.5,there is a shift in climate subtypes,either within the same climate zone(e.g.,Dfa to Dfb and Cfb to Cfa)or across other climate zones(e.g.,Dfb[continental warm-summer humid]to BSk[dry,cold semi-arid]and Cwa[temperate]to Am[tropical]).These shifts may result in lower efficiency for the current GBGI in the future.Given the importance of multiple services,it is crucial to balance their functionality,cooling performance,and other related co-benefits when planning for the future GBGI.This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritizing effective interventions to reduce the risk of urban overheating,filling research gaps,and promoti展开更多
文摘The emerging development of connected and automated vehicles imposes a significant challenge on current vehicle control and transportation systems. This paper proposes a novel unified approach, Parallel Driving, a cloud-based cyberphysical-social systems(CPSS) framework aiming at synergizing connected automated driving. This study first introduces the CPSS and ACP-based intelligent machine systems. Then the parallel driving is proposed in the cyber-physical-social space,considering interactions among vehicles, human drivers, and information. Within the framework, parallel testing, parallel learning and parallel reinforcement learning are developed and concisely reviewed. Development on intelligent horizon(iHorizon)and its applications are also presented towards parallel horizon.The proposed parallel driving offers an ample solution for achieving a smooth, safe and efficient cooperation among connected automated vehicles with different levels of automation in future road transportation systems.
文摘Magnesium is one of the largely available elements in the earth’s crust. It has a low structural density with high specific strength. This unique material property has forced an increase in the use of magnesium and its alloys in various applications pertaining to industrial sector,automobiles, aerospace and biomedical. Since magnesium is a highly reactive metal, it is prone to higher rate of corrosion as compared to its counterparts. Thus, it is essential to analyze the corrosion behavior of magnesium and its alloys in its applications. An appropriate process is to be followed in the design and development of magnesium alloys which overcome the limitations of magnesium and enhance the desired material properties in accordance to their applications. This review paper summarizes the importance of magnesium and its material properties. The influence of various alloying elements on the mechanical properties of magnesium is reviewed. The broad classification of Mg alloys and their behavioral trends are detailed. The corrosion behavior of magnesium and the influence of corrosion products on the material characteristics of magnesium, in aqueous medium, are discussed. The manufacturing techniques of magnesium alloys along with the secondary techniques are also covered. The various applications and the limitations of magnesium in these applications are covered. A complete section is dedicated towards detailing the recent trends of magnesium(Mg) alloys, i.e., the biodegradable nature and applications of Mg alloys. The influence of biocorrosion on Mg alloys and techniques to overcome it have been deliberated. This paper provides a thorough review on recent developments of magnesium with respect to engineering applications.
基金supported by Jaguar Land Roverthe UK-EPSRC grant EP/N012089/1 as part of the jointly funded Towards Autonomy:Smart and Connected Control(TASCC)Programme
文摘In present-day highly-automated vehicles, there are occasions when the driving system disengages and the human driver is required to take-over. This is of great importance to a vehicle's safety and ride comfort. In the U.S state of California, the Autonomous Vehicle Testing Regulations require every manufacturer testing autonomous vehicles on public roads to submit an annual report summarizing the disengagements of the technology experienced during testing. On 1 January 2016,seven manufacturers submitted their first disengagement reports:Bosch, Delphi, Google, Nissan, Mercedes-Benz, Volkswagen, and Tesla Motors. This work analyses the data from these disengagement reports with the aim of gaining abetter understanding of the situations in which a driver is required to takeover, as this is potentially useful in improving the Society of Automotive Engineers(SAE) Level 2 and Level 3 automation technologies.Disengagement events from testing are classified into different groups based on attributes and the causes of disengagement are investigated and compared in detail. The mechanisms and time taken for take-over transition occurred in disengagements are studied. Finally, recommendations for OEMs, manufacturers, and government organizations are also discussed.
文摘Lane detection is a fundamental aspect of most current advanced driver assistance systems(ADASs). A large number of existing results focus on the study of vision-based lane detection methods due to the extensive knowledge background and the low-cost of camera devices. In this paper, previous visionbased lane detection studies are reviewed in terms of three aspects, which are lane detection algorithms, integration, and evaluation methods. Next, considering the inevitable limitations that exist in the camera-based lane detection system, the system integration methodologies for constructing more robust detection systems are reviewed and analyzed. The integration methods are further divided into three levels, namely, algorithm, system,and sensor. Algorithm level combines different lane detection algorithms while system level integrates other object detection systems to comprehensively detect lane positions. Sensor level uses multi-modal sensors to build a robust lane recognition system. In view of the complexity of evaluating the detection system, and the lack of common evaluation procedure and uniform metrics in past studies, the existing evaluation methods and metrics are analyzed and classified to propose a better evaluation of the lane detection system. Next, a comparison of representative studies is performed. Finally, a discussion on the limitations of current lane detection systems and the future developing trends toward an Artificial Society, Computational experiment-based parallel lane detection framework is proposed.
基金supported by National Key Science and Technology Projects of China (Grant No. 2009ZX04001-101, Grant No. 2009ZX01001-151)New Century Excellent Talents in University,China (GrantNo. NCET-07-0246)National Natural Science Foundation of China(Grant No. 50675051)
文摘The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS.
基金Financial supports for this work,provided by the National Natural Science Foundation of China(No.41974164)the Scientific Research Startup Fund for High Level Talents Introduced by Anhui University of Science and Technology(No.2021yjrc16)the Chinese Government Scholarship(No.201906420030),are gratefully acknowledged.
文摘Understanding the mechanism of progressive debonding of bolts is of great significance for underground safety.In this paper,both laboratory experiment and numerical simulation of the pull-out tests were performed.The experimental pull-out test specimens were prepared using cement mortar material,and a relationship between the pull-out strength of the bolt and the uniaxial compressive strength(UCS)of cement mortar material specimen was established.The locations of crack developed in the pull-out process were identified using the acoustic emission(AE)technique.The pull-out test was reproduced using 2D Particle Flow Code(PFC^(2D))with calibrated parameters.The experimental results show that the axial displacement of the cement mortar material at the peak load during the test was approximately 5 mm for cement-based grout of all strength.In contrast,the peak load of the bolt increased with the UCS of the confining medium.Under peak load,cracks propagated to less than one half of the anchorage length,indicating a lag between crack propagation and axial bolt load transmission.The simulation results show that the dilatation between the bolt and the rock induced cracks and extended the force field along the anchorage direction;and,it was identified as the major contributing factor for the pull-out failure of rock bolt.
基金supported by the National Natural Science Foundation of China(61403158,61520106008)the Project of the Education Department of Jilin Province(2016-429)
文摘Next-generation vehicle control and future autonomous driving require further advances in vehicle dynamic state estimation. This article provides a concise review, along with the perspectives, of the recent developments in the estimation of vehicle dynamic states. The definitions used in vehicle dynamic state estimation are first introduced, and alternative estimation structures are presented. Then, the sensor configuration schemes used to estimate vehicle velocity, sideslip angle, yaw rate and roll angle are presented. The vehicle models used for vehicle dynamic state estimation are further summarized, and representative estimation approaches are discussed. Future concerns and perspectives for vehicle dynamic state estimation are also discussed.
基金supported by National Natural Science Foundation of China (Grant Nos. 41571130044 & 41325002)111 Plan (B14001)Peking University Undergraduate Talents Training Program
文摘The study of the critical zones(CZs) of the Earth link the composition and function of aboveground vegetation with the characteristics of the rock layers, providing a new way to study how the unique rock and soil conditions in karst regions affect the aboveground vegetation. Based on survey results of the rocks, soils and vegetation in the dolomite and limestone distribution areas in the karst area of central Guizhou, it was found that woody plant cover increases linearly with the number of cracks with a width of more than 1 mm, while the cover of herbaceous plants shows the opposite trend(p<0.01). The dolomite distribution area is characterized by undeveloped crevices, and the thickness of the soil layer is generally less than 20 cm, which is suitable for the distribution of herbaceous plants with shallow roots. Due to the development of crevices in the limestone distribution area, the soil is deeply distributed through the crevices for the deep roots of trees, which leads to a diversified species composition and a complicated structure in the aboveground vegetation. Based on moderate resolution imaging spectroradiometer(MODIS) remote sensing data from 2001 to 2010, the normalized differentiated vegetation index(NDVI) and annual net primary productivity(NPP) results for each phase of a 16-day interval further indicate that the NDVI of the limestone distribution area is significantly higher than that in the dolomite distribution area, but the average annual NPP is the opposite. The results of this paper indicate that in karst CZs, the lithology determines the structure and distribution of the soil, which further determines the cover of woody and herbaceous plants in the aboveground vegetation. Although the amount of soil in the limestone area may be less than that in the dolomite area, the developed crevice structure is more suitable for the growth of trees with deep roots, and the vegetation activity is strong. At present, the treatment of rocky desertification in karst regions needs to fully consider the rock-s
基金supported by the National Nature Science Foundation of China(61520106008,61790563,U1664263)
文摘Prompted by emerging developments in connected and automated vehicles, parallel steering control, one aspect of parallel driving, has become highly important for intelligent vehicles for easing the burden and ensuring the safety of human drivers. This paper presents a parallel steering control framework for an intelligent vehicle using moving horizon optimization.The framework considers lateral stability, collision avoidance and actuator saturation and describes them as constraints, which can blend the operation of a human driver and a parallel steering controller effectively. Moreover, the road hazard and the steering operation error are employed to evaluate the operational hazardous of an intelligent vehicle. Under the hazard evaluation,the intelligent vehicle will be mainly operated by the human driver when the vehicle operates in a safe and stable manner.The automated steering driving objective will play an active role and regulate the steering operations of the intelligent vehicle based on the hazard evaluation. To verify the effectiveness of the proposed hazard-evaluation-oriented moving horizon parallel steering control approach, various validations are conducted, and the results are compared with a parallel steering scheme that does not consider automated driving situations. The results illustrate that the proposed parallel steering controller achieves acceptable performance under both conventional conditions and hazardous conditions.
文摘The experimental investigations of the effect of contact time/temperature on initiating the cook-off using 7.62 mm calibre cartridge cases(CC) were conducted previously.These cartridges were hlled with commercial off-the-shelf(COTS) double based(DB) propellant(Bulls Eye)and were loaded in a hot chamber.The thermal explosion temperature is of great significance to both weapon designers and safety inspectors as it provides the operational limit and safe operating temperature.For CC under test,it was found that the cook-off temperatures of this propellant were encountered with the heat transfer profile of the simulated gun barrel between 151.4 ℃ and 153.4 ℃,with a reaction occurring in less than300 s after the round was chambered.Usefully,each experiment was found to be consistent and repeatable.
基金This work has been commissioned by the UKRI(EPSRC,NERC,AHRC)funded by RECLAIM Network Plus project(EP/W034034/1,EP/W033984)under its synthesis review seriesThe following authors acknowledge the funding received through their grants:P.K.and L.J.(NE/X002799/1,NE/X002772/1),L.J.(H2020 REGREEN,EU Grant agreement No.821016,2021YFE93100),G.M.L.(FAPESP 2019/08783-0),C.D.F.R.(EP/R017727),L.M.(ARC Grant No.IC220100012),H.G.(RGC Grant No.C5024-21G),M.F.A.and E.D.F.(FAPESP Grant No.2016/18438-0,2022/02365-5),S.J.C.(NSFC Grant No.52225005),R.Y.(NSFC Grant No.52278090),F.W.(NKP Grant No.2020YFC180700),J.E.(NE/X000443/1),and F.C.(NE/M010961/1,NE/V002171/1).The authors thank Andrea Sofia Majjul Fajardo for her contribution to the initial design of certain figures.We also thank the team members of GCARE and its Guildford Living Lab(GLL),as well as the participants in the RECLAIM Network Plus Horizon Scanning Workshop.
文摘The combination of urbanization and global warming leads to urban overheating and compounds the frequency and intensity of extreme heat events due to climate change.Yet,the risk of urban overheating can be mitigated by urban green-blue-grey infrastructure(GBGI),such as parks,wetlands,and engineered greening,which have the potential to effectively reduce summer air temperatures.Despite many reviews,the evidence bases on quantified GBGI cooling benefits remains partial and the practical recommendations for implementation are unclear.This systematic literature review synthesizes the evidence base for heat mitigation and related co-benefits,identifies knowledge gaps,and proposes recommendations for their implementation to maximize their benefits.After screening 27,486 papers,202 were reviewed,based on 51 GBGI types categorized under 10 main divisions.Certain GBGI(green walls,parks,street trees)have been well researched for their urban cooling capabilities.However,several other GBGI have received negligible(zoological garden,golf course,estuary)or minimal(private garden,allotment)attention.The most efficient air cooling was observed in botanical gardens(5.0±3.5℃),wetlands(4.9±3.2℃),green walls(4.1±4.2℃),street trees(3.8±3.1℃),and vegetated balconies(3.8±2.7℃).Under changing climate conditions(2070–2100)with consideration of RCP8.5,there is a shift in climate subtypes,either within the same climate zone(e.g.,Dfa to Dfb and Cfb to Cfa)or across other climate zones(e.g.,Dfb[continental warm-summer humid]to BSk[dry,cold semi-arid]and Cwa[temperate]to Am[tropical]).These shifts may result in lower efficiency for the current GBGI in the future.Given the importance of multiple services,it is crucial to balance their functionality,cooling performance,and other related co-benefits when planning for the future GBGI.This global GBGI heat mitigation inventory can assist policymakers and urban planners in prioritizing effective interventions to reduce the risk of urban overheating,filling research gaps,and promoti