Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a com...Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.展开更多
Genetic manipulation of genes to upregulate specific branches of metabolic pathways is a method that is commonly used to improve fruit quality.However,the use of a single gene to impact several metabolic pathways is d...Genetic manipulation of genes to upregulate specific branches of metabolic pathways is a method that is commonly used to improve fruit quality.However,the use of a single gene to impact several metabolic pathways is difficult.Here,we show that overexpression of the single gene SlMYB75(SlMYB75-OE)is effective at improving multiple fruit quality traits.In these engineered fruits,the anthocyanin content reached 1.86mg g−1 fresh weight at the red-ripe stage,and these SlMYB75-OE tomatoes displayed a series of physiological changes,including delayed ripening and increased ethylene production.In addition to anthocyanin,the total contents of phenolics,flavonoids and soluble solids in SlMYB75-OE fruits were enhanced by 2.6,4,and 1.2 times,respectively,compared to those of wild-type(WT)fruits.Interestingly,a number of aroma volatiles,such as aldehyde,phenylpropanoid-derived and terpene volatiles,were significantly increased in SlMYB75-OE fruits,with some terpene volatiles showing more than 10 times higher levels than those in WT fruits.Consistent with the metabolic assessment,transcriptomic profiling indicated that the genes involved in the ethylene signaling,phenylpropanoid and isoprenoid pathways were greatly upregulated in SlMYB75-OE fruits.Yeast one-hybrid and transactivation assays revealed that SlMYB75 is able to directly bind to the MYBPLANT and MYBPZM cis-regulatory elements and to activate the promoters of the LOXC,AADC2 and TPS genes.The identification of SlMYB75 as a key regulator of fruit quality attributes through the transcriptional regulation of downstream genes involved in several metabolic pathways opens new avenues towards engineering fruits with a higher sensory and nutritional quality.展开更多
The Asteraceae (Compositae),a large plant family of approximately 24 000-35 000 species,accounts for^10% of all angiosperm species and contributes a lot to plant diversity.The most representative members of the Astera...The Asteraceae (Compositae),a large plant family of approximately 24 000-35 000 species,accounts for^10% of all angiosperm species and contributes a lot to plant diversity.The most representative members of the Asteraceae are the economically important chrysanthemums (Chrysanthemum L.)that diversified through reticulate evolution.Biodiversity is typically created by multiple evolutionary mechanisms such as wholegenome duplication 0NGD)or polyploidization and locally repetitive genome expansion.However,the lack of genomic data from chrysanthemum species has prevented an in-depth analysis of the evolutionary mechanisms involved in their diversification.Here,we used Oxford Nanopore long-read technologyto sequence the diploid Chrysanthemum nankingense genome,which represents one of the progenitor genomes of domesticated chrysanthemums.Our analysis revealed that the evolution of the C.nankingense genome was driven by bursts of repetitive element expansion and WGD events including a recentWGD that distinguishes chrysanthemum from sunflower,which diverged from chrysanthemum approximately 38.8 million years ago.Variations of ornamental and medicinal traits in chrysanthemums are linked to the expansion of candidate gene families by duplication events including paralogous gene duplication.Collectively,our study of the assembled reference genome offers new knowledge and resources to dissect the history and pattern of evolution and diversification of chrysanthemum plants,and also to accelerate their breeding and improvement.展开更多
The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was ...The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was tested by 2,2-diphenyl-l-picrylhydra- zyl radicals (DPPH) method and 2,2'-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) method. The total phenolic and flavonoid contents, and their antioxidant capacity varied in different citrus fruit tissues. Generally, the peel had both the highest average of total phenolics (27.18 mg gallic acid equivalent (GAE) g^-1 DW) and total flavonoids (38.97 mg rutin equivalent (RE) g^-1 DW). The highest antioxidant capacity was also the average of DPPH value (21.92 mg vitamin C equiv- alent antioxidant capacity (VCEAC) g^-1 DW) and average of ABTS value (78.70 mg VCEAC g-1 DW) in peel. The correlation coefficient between the total phenolics and their antioxidant capacity of different citrus fruits tissues ranged from 0.079 to 0.792, and from -0.150 to 0.664 for the total flavonoids. The antioxidant capacity of fruit tissues were correlated with the total phenoilc content and flavonoid content except in case of the peel. In addition, the total phenolic content and antioxidant capacity varied in different citrus genotypes. Manju and Karamandarin were better genotypes with higher antioxidation and the phenolic content, however Shagan was the poorest genotype with lower antioxidation and the phenolic content.展开更多
Cultivated peanut (Arachis hypogaea) is an allotetraploid crop planted in Asia, Africa, and America for edible oil and protein. To explore the origins and consequences of tetraploidy, we sequenced the allotetraploid A...Cultivated peanut (Arachis hypogaea) is an allotetraploid crop planted in Asia, Africa, and America for edible oil and protein. To explore the origins and consequences of tetraploidy, we sequenced the allotetraploid A. hypogaea genome and compared it with the related diploid Arachis duranensis and Arachis ipaensis genomes. We annotated 39 888 A-subgenome genes and 41 526 B-subgenome genes in allotetraploid peanut. The A. hypogaea subgenomes have evolved asymmetrically, with the B subgenome resembling the ancestral state and the A subgenome undergoing more gene disruption, loss, conversion, and transposable element proliferation, and having reduced gene expression during seed development despite lacking genome-wide expression dominance. Genomic and transcriptomic analyses identified more than 2 500 oil metabolism-related genes and revealed that most of them show altered expression early in seed development while their expression ceases during desiccation, presenting a comprehensive map of peanut lipid biosynthesis. The availability of these genomic resources will facilitate a better understanding of the complex genome architecture, agronomically and economically important genes, and genetic improvement of peanut.展开更多
The outbreak of COVID-19 started in mid-December2019 in Wuhan, China. Up to 29 February 2020,SARS-CoV-2(HCoV-19/2019-nCoV) had infected more than 85 000 people in the world. In this study,we used 93 complete genomes o...The outbreak of COVID-19 started in mid-December2019 in Wuhan, China. Up to 29 February 2020,SARS-CoV-2(HCoV-19/2019-nCoV) had infected more than 85 000 people in the world. In this study,we used 93 complete genomes of SARS-CoV-2 from the GISAID EpiFlu TM database to investigate the evolution and human-to-human transmissions of SARS-CoV-2 in the first two months of the outbreak.We constructed haplotypes of the SARS-CoV-2 genomes, performed phylogenomic analyses and estimated the potential population size changes of the virus. The date of population expansion was calculated based on the expansion parameter tau(τ)using the formula t=τ/2 u. A total of 120 substitution sites with 119 codons, including 79 non-synonymous and 40 synonymous substitutions, were found in eight coding-regions in the SARS-CoV-2 genomes.Forty non-synonymous substitutions are potentially associated with virus adaptation. No combinations were detected. The 58 haplotypes(31 found in samples from China and 31 from outside China)were identified in 93 viral genomes under study and could be classified into five groups. By applying the reported bat coronavirus genome(bat-RaTG13-CoV)as the outgroup, we found that haplotypes H13 and H38 might be considered as ancestral haplotypes,and later H1 was derived from the intermediate haplotype H3. The population size of the SARS-CoV-2 was estimated to have undergone a recent expansion on 06 January 2020, and an early expansion on 08 December 2019. Furthermore,phyloepidemiologic approaches have recovered specific directions of human-to-human transmissions and the potential sources for international infected cases.展开更多
Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This r...Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This review focuses on the recent progress related to the design,modification,and construction of Cd S-based photocatalysts with excellent photocatalytic H2 evolution performances.First,the basic concepts and mechanisms of photocatalytic H2 evolution are briefly introduced.Thereafter,the fundamental properties,important advancements,and bottlenecks of Cd S in photocatalytic H2 generation are presented in detail to provide an overview of the potential of this material.Subsequently,various modification strategies adopted for Cd S-based photocatalysts to yield solar H2 are discussed,among which the effective approaches aim at generating more charge carriers,promoting efficient charge separation,boosting interfacial charge transfer,accelerating charge utilization,and suppressing charge-induced self-photocorrosion.The critical factors governing the performance of the photocatalyst and the feasibility of each modification strategy toward shaping future research directions are comprehensively discussed with examples.Finally,the prospects and challenges encountered in developing nanostructured Cd S and Cd S-based nanocomposites in photocatalytic H2 evolution are presented.展开更多
The classification of the economically important genus Prunus L. sensu lato (s.L) is controversial due to the high levels of convergent or the parallel evolution of morphological characters. In the present study, ph...The classification of the economically important genus Prunus L. sensu lato (s.L) is controversial due to the high levels of convergent or the parallel evolution of morphological characters. In the present study, phylogenetic analyses of fifteen main segregates of Prunus s.I. represented by eighty-four species were conducted with maximum parsimony and Bayesian approaches using twelve chloroplast regions (atpB- rbcL, matK, ndhF, psbA-trnH, rbcL, rpL 16, rpoC1, rps16, trnS-G, trnL, trnL-F and ycfl) and three nuclear genes (ITS, s6pdh and Sbel) to explore their infrageneric used to develop a new, phylogeny-based classification relationships. The results of these analyses were of Prunus s.I. Our phylogenetic reconstructions resolved three main clades of Prunus s.I. with strong supports. We adopted a broad-sensed genus, Prunus, and recognised three subgenera corresponding to the three main clades: subgenus Padus, subgenus Cerasus and subgenus Prunus. Seven sections of subgenus Prunus were recognised. The dwarf cherries, which were previously assigned to subgenus Cerasus, were included in this subgenus Prunus. One new section name, Prunus L. subgenus Prunus section Persicae (T. T. yu & L. T. Lu) S. L. Zhou and one new species name, Prunus tianshanica (Pojarkov) S. Shi, were proposed.展开更多
Negative air ions are natural components of the air we breathe Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, ...Negative air ions are natural components of the air we breathe Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, based on monthly monitoring in 15 parks from March 2009 to February 2010. In each park, sampling sites were selected in forests and open spaces. The annual variation in negative air ion concentrations (NAIC) showed peak values from June to October and minimum values from December to January. NAIC were highest in summer and autumn, intermediate in spring, and lowest in winter. During spring and summer, NAIC in open spaces were significantly higher in rural areas than those in suburban areas. However, there were no significant differences in NAIC at forest sites among seasons. For open spaces, total suspended particles (TSP) were the dominant determining factor of NAIC in sum- mer, and air temperature and air humidity were the dominant determining factors of NAIC in spring, which were tightly correlated with Shanghai's ongoing urbanization and its impacts on the environment. R is suggested that urbanization could induce variation in NAIC along the urban-rural gradient, but that may not change the temporal variation pattern. Fur- thermore, the effects of urbanization on NAIC were limited in non-vegetated or less-vegetated sites, such as open spaces, but not in well-vegetated areas, such as urban forests. Therefore, we suggest that urban greening, especially urban forest, has significant resistance to theeffect of urbanization on NAIC.展开更多
Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide.However,the application of CW for w...Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide.However,the application of CW for wastewater treatment in frigid climate presents special challenges.Wetland treatment of wastewater relies largely on biological processes,and reliable treatment is often a function of climate conditions.To date,the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate.This paper therefore highlights the practice and applications of treatment wetlands in cold climate.A comprehensive review of the effectiveness of contaminant removal in different wetland systems including:(1) free water surface(FWS) CWs;(2) subsurface flow(SSF) CWs;and(3) hybrid wetland systems,is presented.The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants.The strategies of wetland design and operation for performance intensification,such as the presence of plant,operational mode,effluent recirculation,artificial aeration and in-series design,which are crucial to achieve the sustainable treatment performance in cold climate,are also discussed.This study is conducive to further research for the understanding of CW design and treatment performance in cold climate.展开更多
Owing to their unique physicochemical,optical and electrical properties,two-dimensional(2D)MoS_(2) cocatalysts have been widely applied in designing and developing highly efficient composite photocatalysts for hydroge...Owing to their unique physicochemical,optical and electrical properties,two-dimensional(2D)MoS_(2) cocatalysts have been widely applied in designing and developing highly efficient composite photocatalysts for hydrogen generation under suitable light irradiation.In this review,we first elaborated on the fundamental aspects of 2D MoS_(2) cocatalysts to include the structural design principles,synthesis strategies,strengths and challenges.Subsequently,we thoroughly highlighted and discussed the modification strategies of 2D MoS_(2) H2-evolution cocatalysts,including doping heteroatoms(e.g.metals,non-metals,and co-doping),designing interfacial coupling morphologies,controlling the physical properties(e.g.thickness,size,structural defects or pores),exposing the reactive facets or edge sites,constructing cocatalyst heterojunctions,engineering the interfacial bonds and confinement effects.In the future,the forefront challenges in understanding and in precise controlling of the active sites at molecular level or atomic level should be carefully studied,while various potential mechanisms of photogenerated-electrons interactions should be proposed.The applications of MoS_(2) cocatalyst in the overall water splitting are also expected.This review may offer new inspiration for designing and constructing novel and efficient MoS_(2)-based composite photocatalysts for highly efficient photocatalytic hydrogen evolution.展开更多
Sweet osmanthus(Osmanthus fragrans)is a very popular ornamental tree species throughout Southeast Asia and USA particularly for its extremely fragrant aroma.We constructed a chromosome-level reference genome of O.frag...Sweet osmanthus(Osmanthus fragrans)is a very popular ornamental tree species throughout Southeast Asia and USA particularly for its extremely fragrant aroma.We constructed a chromosome-level reference genome of O.fragrans to assist in studies of the evolution,genetic diversity,and molecular mechanism of aroma development.A total of over 118 Gb of polished reads was produced from HiSeq(45.1 Gb)and PacBio Sequel(73.35 Gb),giving 100×depth coverage for long reads.The combination of Illumina-short reads,PacBio-long reads,and Hi-C data produced the final chromosome quality genome of O.fragrans with a genome size of 727 Mb and a heterozygosity of 1.45%.The genome was annotated using de novo and homology comparison and further refined with transcriptome data.The genome of O.fragrans was predicted to have 45,542 genes,of which 95.68%were functionally annotated.Genome annotation found 49.35%as the repetitive sequences,with long terminal repeats(LTR)being the richest(28.94%).Genome evolution analysis indicated the evidence of whole-genome duplication 15 million years ago,which contributed to the current content of 45,242 genes.Metabolic analysis revealed that linalool,a monoterpene is the main aroma compound.Based on the genome and transcriptome,we further demonstrated the direct connection between terpene synthases(TPSs)and the rich aromatic molecules in O.fragrans.We identified three new flower-specific TPS genes,of which the expression coincided with the production of linalool.Our results suggest that the high number of TPS genes and the flower tissue-and stage-specific TPS genes expressions might drive the strong unique aroma production of O.fragrans.展开更多
Genome editing offers great advantages in identifying gene function and generating agronomically important mutations in crops. Here,we report that the genome of cabbage(Brassica oleracea var. capitata), an important c...Genome editing offers great advantages in identifying gene function and generating agronomically important mutations in crops. Here,we report that the genome of cabbage(Brassica oleracea var. capitata), an important cruciferous vegetable, can also be precisely edited by a CRISPR/Cas9 system stacked with multiple single-guide RNA-expressing cassettes. When the phytoene desaturase Bo PDS gene was used as the target gene, an albino-phenotype transgenic shoot in T0 Basta-resistant lines was observed, and 37.5% of the transgenic cabbage shoots carried Bo PDS gene mutations as a result of nucleotide deletions at the expected position. Moreover, mutations were detected in sites with the same target sequence in gene Bol016089 which is paralogous to the Bo PDS gene. Our results show that the CRISPR/Cas9 system is a powerful tool for cabbage variety improvement by genome editing.展开更多
The advent of clustered regularly interspaced short palindromic repeat(CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR ...The advent of clustered regularly interspaced short palindromic repeat(CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel(insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.展开更多
Anthocyanins are the most widely produced secondary metabolites in plants,and they play an important role in plant growth and reproduction.The nitrogen source is an important factor affecting anthocyanin production,bu...Anthocyanins are the most widely produced secondary metabolites in plants,and they play an important role in plant growth and reproduction.The nitrogen source is an important factor affecting anthocyanin production,but the nitrogen concentrations on metabolism and the underlying genetic basis remain unclear.In this study,in vitro anthocyanin induction was conducted on Malus spectabilis.The leaf explants were cultivated in media containing different nitrogen concentrations.The results suggested that when the nitrogen contents decreased in limit,the color of leaf explants turned from green to red,and increased anthocyanin accumulation led to a change in phenotype.Furthermore,the content of other flavonoids,such as dihydroquercetin,epicatechin,and catechin,increased under low nitrogen conditions.The transcription levels of the general flavonoid pathway genes,from phenylalanine ammonia lyase(PAL)to anthocyanidin synthase(ANS),were associated with the concentration of corresponding flavonoid compounds and phenotype changes.In particular,the expression level of ANS increased substantially under a low nitrogen treatment,which was significantly and positively correlated with the anthocyanin levels(R2=0.72,P<0.05).The increased expression patterns of anthocyanin pathway genes were similar to that of the transcription factor MYB10.We further verified MYB10 played an important role in the anthocyanin pathway in leaves of Malus spectabilis.These results suggested that we can improve the desirable ornamental plant phenotypes by controlling nitrogen content.This process may offer clues to further development of new agricultural practices.展开更多
Main progress of transgenic techniques in apple made in recent years was summarized, and related research achievements in various aspects like transformation method, regenerating ability of explants, strain type and i...Main progress of transgenic techniques in apple made in recent years was summarized, and related research achievements in various aspects like transformation method, regenerating ability of explants, strain type and infection conditions of Agrobacterium were reviewed. On this basis, the current bottlenecks in transgenic techniques in apple were put forward.展开更多
In this paper,the ultrasonic-assisted extraction process of flavonoid compounds from leaves of Amorpha fruticosa is optimized.In single factor experiments,solid/liquid ratios,ultrasonic power,ethanol concentrations an...In this paper,the ultrasonic-assisted extraction process of flavonoid compounds from leaves of Amorpha fruticosa is optimized.In single factor experiments,solid/liquid ratios,ultrasonic power,ethanol concentrations and extraction cycles were experimental factors.Box–Behnken central composite design and RSM analyzed the effects of the four factors on the yield of total flavonoids.The optimal extraction parameters were solid/liquid ratio 1:50 g/mL,ultrasonic power 316 W,ethanol concentration 50%,4 extraction cycles.In the optimized condition,the estimated value of the regression model was 66.6456 mg/g while the measured value was 66.4329 mg/g.展开更多
Members of the genus Paeonia,which consists of globally renowned ornamentals and traditional medicinal plants with a rich history spanning over 1500 years,are widely distributed throughout the Northern Hemisphere.Sinc...Members of the genus Paeonia,which consists of globally renowned ornamentals and traditional medicinal plants with a rich history spanning over 1500 years,are widely distributed throughout the Northern Hemisphere.Since 1900,over 2200 new horticultural Paeonia cultivars have been created by the discovery and breeding of wild species.However,information pertaining to Paeonia breeding is considerably fragmented,with fundamental gaps in knowledge,creating a bottleneck in effective breeding strategies.This review systematically introduces Paeonia germplasm resources,including wild species and cultivars,summarizes the breeding strategy and results of each Paeonia cultivar group,and focuses on recent progress in the isolation and functional characterization of structural and regulatory genes related to important horticultural traits.Perspectives pertaining to the resource protection and utilization,breeding and industrialization of Paeonia in the future are also briefly discussed.展开更多
Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination ...Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors,the phytohormone abscisic acid(ABA)prevents premature germination and seedling growth under unfavorable conditions.However,little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted.Here,we report that ABA Signaling Terminator(ABT),a WD40 protein,efficiently switches off ABA signaling and is critical for seed germination and seedling establishment.ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner.Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA,whereas knockout of ABT has the opposite effect.We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins,interferes with the interaction between PYR1/PYL4 and ABI1/ABI2,and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4,thereby terminating ABA signaling.Taken together,our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis.展开更多
Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is importan...Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.展开更多
基金supported by the National Key Scientific Research Project(2011CB915400)supported by the National Natural Science Foundation of China(31730007)
文摘Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
基金supported by the National Key Research and Development Program(2016YFD0400101)the National Natural Science Foundation of China(31572175,31772370)+1 种基金the Fundamental Research Funds for the Central Universities(2018CDXYSM0021)the Committee of Science and Technology of Chongqing(cstckjcxljrc15).
文摘Genetic manipulation of genes to upregulate specific branches of metabolic pathways is a method that is commonly used to improve fruit quality.However,the use of a single gene to impact several metabolic pathways is difficult.Here,we show that overexpression of the single gene SlMYB75(SlMYB75-OE)is effective at improving multiple fruit quality traits.In these engineered fruits,the anthocyanin content reached 1.86mg g−1 fresh weight at the red-ripe stage,and these SlMYB75-OE tomatoes displayed a series of physiological changes,including delayed ripening and increased ethylene production.In addition to anthocyanin,the total contents of phenolics,flavonoids and soluble solids in SlMYB75-OE fruits were enhanced by 2.6,4,and 1.2 times,respectively,compared to those of wild-type(WT)fruits.Interestingly,a number of aroma volatiles,such as aldehyde,phenylpropanoid-derived and terpene volatiles,were significantly increased in SlMYB75-OE fruits,with some terpene volatiles showing more than 10 times higher levels than those in WT fruits.Consistent with the metabolic assessment,transcriptomic profiling indicated that the genes involved in the ethylene signaling,phenylpropanoid and isoprenoid pathways were greatly upregulated in SlMYB75-OE fruits.Yeast one-hybrid and transactivation assays revealed that SlMYB75 is able to directly bind to the MYBPLANT and MYBPZM cis-regulatory elements and to activate the promoters of the LOXC,AADC2 and TPS genes.The identification of SlMYB75 as a key regulator of fruit quality attributes through the transcriptional regulation of downstream genes involved in several metabolic pathways opens new avenues towards engineering fruits with a higher sensory and nutritional quality.
基金The National Key Research and Development Program of China (2016YFD0801102)and the National Natural Science Foundation of China (31870198 and 31400278).
文摘The Asteraceae (Compositae),a large plant family of approximately 24 000-35 000 species,accounts for^10% of all angiosperm species and contributes a lot to plant diversity.The most representative members of the Asteraceae are the economically important chrysanthemums (Chrysanthemum L.)that diversified through reticulate evolution.Biodiversity is typically created by multiple evolutionary mechanisms such as wholegenome duplication 0NGD)or polyploidization and locally repetitive genome expansion.However,the lack of genomic data from chrysanthemum species has prevented an in-depth analysis of the evolutionary mechanisms involved in their diversification.Here,we used Oxford Nanopore long-read technologyto sequence the diploid Chrysanthemum nankingense genome,which represents one of the progenitor genomes of domesticated chrysanthemums.Our analysis revealed that the evolution of the C.nankingense genome was driven by bursts of repetitive element expansion and WGD events including a recentWGD that distinguishes chrysanthemum from sunflower,which diverged from chrysanthemum approximately 38.8 million years ago.Variations of ornamental and medicinal traits in chrysanthemums are linked to the expansion of candidate gene families by duplication events including paralogous gene duplication.Collectively,our study of the assembled reference genome offers new knowledge and resources to dissect the history and pattern of evolution and diversification of chrysanthemum plants,and also to accelerate their breeding and improvement.
基金supported by the Identification of the Common Nutrients of Edible Agricultural Products and the Character Nutrients of Special Agricultural Products and Their Key Control Points of Quality,China (GJFP201701501)the Chongqing Program for Production of Late Maturing Citrus Fruits,China (20174-4)+2 种基金the Program for Talent Introduction of Chongqing Three Gorges University,China (14RC05)the Program for Chongqing Municipal Education Commission,China (KJ1501015)the Program for Chongqing Science & Technology Commission,China (cstc2016jcyj A0555)
文摘The total phenolic and flavonoid contents in the fruit tissues (peels, pulp residues, seeds, and juices) of 19 citrus genotypes belonged to Citrus reticulata Blanco were evaluated and their antioxidant capacity was tested by 2,2-diphenyl-l-picrylhydra- zyl radicals (DPPH) method and 2,2'-azino-bis(3-ethylbenzthiozoline-6)-sulphonic acid (ABTS) method. The total phenolic and flavonoid contents, and their antioxidant capacity varied in different citrus fruit tissues. Generally, the peel had both the highest average of total phenolics (27.18 mg gallic acid equivalent (GAE) g^-1 DW) and total flavonoids (38.97 mg rutin equivalent (RE) g^-1 DW). The highest antioxidant capacity was also the average of DPPH value (21.92 mg vitamin C equiv- alent antioxidant capacity (VCEAC) g^-1 DW) and average of ABTS value (78.70 mg VCEAC g-1 DW) in peel. The correlation coefficient between the total phenolics and their antioxidant capacity of different citrus fruits tissues ranged from 0.079 to 0.792, and from -0.150 to 0.664 for the total flavonoids. The antioxidant capacity of fruit tissues were correlated with the total phenoilc content and flavonoid content except in case of the peel. In addition, the total phenolic content and antioxidant capacity varied in different citrus genotypes. Manju and Karamandarin were better genotypes with higher antioxidation and the phenolic content, however Shagan was the poorest genotype with lower antioxidation and the phenolic content.
基金National Natural Science Foundation of China (31501246,31771841,31801401)the Natural Science Foundation of Guangdong Province (2017A030311007)+4 种基金the Modem Agroindustry Technology Research System (CARS-14)the Science and Technology Planning Project of Guangdong Province (2015B020231006, 2015A020209051, 2016B020201003, 2016LM3161, 2016LM3164, 2014A020208060 and S2013020012647)the International Science & Technology Cooperation Program of Guangdong Province (2013B050800021)the Agricultural Science and Technology Program of Guangdong (2013B020301014)the teamwork projects funded Guangdong Natural Science Foundation of Guangdong Province (no. 2017A030312004).
文摘Cultivated peanut (Arachis hypogaea) is an allotetraploid crop planted in Asia, Africa, and America for edible oil and protein. To explore the origins and consequences of tetraploidy, we sequenced the allotetraploid A. hypogaea genome and compared it with the related diploid Arachis duranensis and Arachis ipaensis genomes. We annotated 39 888 A-subgenome genes and 41 526 B-subgenome genes in allotetraploid peanut. The A. hypogaea subgenomes have evolved asymmetrically, with the B subgenome resembling the ancestral state and the A subgenome undergoing more gene disruption, loss, conversion, and transposable element proliferation, and having reduced gene expression during seed development despite lacking genome-wide expression dominance. Genomic and transcriptomic analyses identified more than 2 500 oil metabolism-related genes and revealed that most of them show altered expression early in seed development while their expression ceases during desiccation, presenting a comprehensive map of peanut lipid biosynthesis. The availability of these genomic resources will facilitate a better understanding of the complex genome architecture, agronomically and economically important genes, and genetic improvement of peanut.
基金Ten Thousand Talents Program of Yunnan for Top-notch Young Talentsthe open research project of“Cross-Cooperative Team”of the Germplasm Bank of Wild Species,Kunming Institute of Botany,Chinese Academy of Sciences.
文摘The outbreak of COVID-19 started in mid-December2019 in Wuhan, China. Up to 29 February 2020,SARS-CoV-2(HCoV-19/2019-nCoV) had infected more than 85 000 people in the world. In this study,we used 93 complete genomes of SARS-CoV-2 from the GISAID EpiFlu TM database to investigate the evolution and human-to-human transmissions of SARS-CoV-2 in the first two months of the outbreak.We constructed haplotypes of the SARS-CoV-2 genomes, performed phylogenomic analyses and estimated the potential population size changes of the virus. The date of population expansion was calculated based on the expansion parameter tau(τ)using the formula t=τ/2 u. A total of 120 substitution sites with 119 codons, including 79 non-synonymous and 40 synonymous substitutions, were found in eight coding-regions in the SARS-CoV-2 genomes.Forty non-synonymous substitutions are potentially associated with virus adaptation. No combinations were detected. The 58 haplotypes(31 found in samples from China and 31 from outside China)were identified in 93 viral genomes under study and could be classified into five groups. By applying the reported bat coronavirus genome(bat-RaTG13-CoV)as the outgroup, we found that haplotypes H13 and H38 might be considered as ancestral haplotypes,and later H1 was derived from the intermediate haplotype H3. The population size of the SARS-CoV-2 was estimated to have undergone a recent expansion on 06 January 2020, and an early expansion on 08 December 2019. Furthermore,phyloepidemiologic approaches have recovered specific directions of human-to-human transmissions and the potential sources for international infected cases.
基金the National Natural Science Foundation of China(21975084 and 51672089)the Ding Ying Talent Project of South China Agricultural University for their support+1 种基金the Hong Kong Research Grant Council(RGC)General Research Fund GRF1305419 for financial supportthe National Natural Science Foundation of China(51972287 and 51502269)。
文摘Cadmium sulfide(Cd S)-based photocatalysts have attracted extensive attention owing to their strong visible light absorption,suitable band energy levels,and excellent electronic charge transportation properties.This review focuses on the recent progress related to the design,modification,and construction of Cd S-based photocatalysts with excellent photocatalytic H2 evolution performances.First,the basic concepts and mechanisms of photocatalytic H2 evolution are briefly introduced.Thereafter,the fundamental properties,important advancements,and bottlenecks of Cd S in photocatalytic H2 generation are presented in detail to provide an overview of the potential of this material.Subsequently,various modification strategies adopted for Cd S-based photocatalysts to yield solar H2 are discussed,among which the effective approaches aim at generating more charge carriers,promoting efficient charge separation,boosting interfacial charge transfer,accelerating charge utilization,and suppressing charge-induced self-photocorrosion.The critical factors governing the performance of the photocatalyst and the feasibility of each modification strategy toward shaping future research directions are comprehensively discussed with examples.Finally,the prospects and challenges encountered in developing nanostructured Cd S and Cd S-based nanocomposites in photocatalytic H2 evolution are presented.
基金supported partly by National Natural Science Foundation of China (31270239)the National High-tech R&D Program (863 Program, 2012AA021602)
文摘The classification of the economically important genus Prunus L. sensu lato (s.L) is controversial due to the high levels of convergent or the parallel evolution of morphological characters. In the present study, phylogenetic analyses of fifteen main segregates of Prunus s.I. represented by eighty-four species were conducted with maximum parsimony and Bayesian approaches using twelve chloroplast regions (atpB- rbcL, matK, ndhF, psbA-trnH, rbcL, rpL 16, rpoC1, rps16, trnS-G, trnL, trnL-F and ycfl) and three nuclear genes (ITS, s6pdh and Sbel) to explore their infrageneric used to develop a new, phylogeny-based classification relationships. The results of these analyses were of Prunus s.I. Our phylogenetic reconstructions resolved three main clades of Prunus s.I. with strong supports. We adopted a broad-sensed genus, Prunus, and recognised three subgenera corresponding to the three main clades: subgenus Padus, subgenus Cerasus and subgenus Prunus. Seven sections of subgenus Prunus were recognised. The dwarf cherries, which were previously assigned to subgenus Cerasus, were included in this subgenus Prunus. One new section name, Prunus L. subgenus Prunus section Persicae (T. T. yu & L. T. Lu) S. L. Zhou and one new species name, Prunus tianshanica (Pojarkov) S. Shi, were proposed.
基金supported by the National Natural Science Foundation of China(No.40971041)
文摘Negative air ions are natural components of the air we breathe Forests are the main continuous natural source of negative air ions (NAI). The spatio-temporal patterns of negative air ions were explored in Shanghai, based on monthly monitoring in 15 parks from March 2009 to February 2010. In each park, sampling sites were selected in forests and open spaces. The annual variation in negative air ion concentrations (NAIC) showed peak values from June to October and minimum values from December to January. NAIC were highest in summer and autumn, intermediate in spring, and lowest in winter. During spring and summer, NAIC in open spaces were significantly higher in rural areas than those in suburban areas. However, there were no significant differences in NAIC at forest sites among seasons. For open spaces, total suspended particles (TSP) were the dominant determining factor of NAIC in sum- mer, and air temperature and air humidity were the dominant determining factors of NAIC in spring, which were tightly correlated with Shanghai's ongoing urbanization and its impacts on the environment. R is suggested that urbanization could induce variation in NAIC along the urban-rural gradient, but that may not change the temporal variation pattern. Fur- thermore, the effects of urbanization on NAIC were limited in non-vegetated or less-vegetated sites, such as open spaces, but not in well-vegetated areas, such as urban forests. Therefore, we suggest that urban greening, especially urban forest, has significant resistance to theeffect of urbanization on NAIC.
文摘Constructed wetlands(CWs) have been successfully used for treating various wastewaters for decades and have been identified as a sustainable wastewater management option worldwide.However,the application of CW for wastewater treatment in frigid climate presents special challenges.Wetland treatment of wastewater relies largely on biological processes,and reliable treatment is often a function of climate conditions.To date,the rate of adoption of wetland technology for wastewater treatment in cold regions has been slow and there are relatively few published reports on CW applications in cold climate.This paper therefore highlights the practice and applications of treatment wetlands in cold climate.A comprehensive review of the effectiveness of contaminant removal in different wetland systems including:(1) free water surface(FWS) CWs;(2) subsurface flow(SSF) CWs;and(3) hybrid wetland systems,is presented.The emphasis of this review is also placed on the influence of cold weather conditions on the removal efficacies of different contaminants.The strategies of wetland design and operation for performance intensification,such as the presence of plant,operational mode,effluent recirculation,artificial aeration and in-series design,which are crucial to achieve the sustainable treatment performance in cold climate,are also discussed.This study is conducive to further research for the understanding of CW design and treatment performance in cold climate.
基金the National Natural Science Foundation of China(Nos.21975084 and 51672089)the Guangdong Provincial Applied Science and Technology Research and Development Program(No.2017B020238005)+2 种基金the Ding Ying Talent Project of South China Agricultural University for their supportthe Hong Kong Research Grant Council(RGC)General Research Fund(No.GRF1305419)for financial supportthe National Natural Science Foundation of China(Nos.51972287 and 51502269)。
文摘Owing to their unique physicochemical,optical and electrical properties,two-dimensional(2D)MoS_(2) cocatalysts have been widely applied in designing and developing highly efficient composite photocatalysts for hydrogen generation under suitable light irradiation.In this review,we first elaborated on the fundamental aspects of 2D MoS_(2) cocatalysts to include the structural design principles,synthesis strategies,strengths and challenges.Subsequently,we thoroughly highlighted and discussed the modification strategies of 2D MoS_(2) H2-evolution cocatalysts,including doping heteroatoms(e.g.metals,non-metals,and co-doping),designing interfacial coupling morphologies,controlling the physical properties(e.g.thickness,size,structural defects or pores),exposing the reactive facets or edge sites,constructing cocatalyst heterojunctions,engineering the interfacial bonds and confinement effects.In the future,the forefront challenges in understanding and in precise controlling of the active sites at molecular level or atomic level should be carefully studied,while various potential mechanisms of photogenerated-electrons interactions should be proposed.The applications of MoS_(2) cocatalyst in the overall water splitting are also expected.This review may offer new inspiration for designing and constructing novel and efficient MoS_(2)-based composite photocatalysts for highly efficient photocatalytic hydrogen evolution.
基金This work was supported by research grants provided by the National Natural Science Foundation(31870695 and 31601785)the Project of Key Research and Development Plan(Modern Agriculture)in Jiangsu(BE2017375)+1 种基金the Selection and Breeding of Excellent Tree Species and Effective Cultivation Techniques(CX(16)1005)the Project of Osmanthus National Germplasm Bank,and the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions.
文摘Sweet osmanthus(Osmanthus fragrans)is a very popular ornamental tree species throughout Southeast Asia and USA particularly for its extremely fragrant aroma.We constructed a chromosome-level reference genome of O.fragrans to assist in studies of the evolution,genetic diversity,and molecular mechanism of aroma development.A total of over 118 Gb of polished reads was produced from HiSeq(45.1 Gb)and PacBio Sequel(73.35 Gb),giving 100×depth coverage for long reads.The combination of Illumina-short reads,PacBio-long reads,and Hi-C data produced the final chromosome quality genome of O.fragrans with a genome size of 727 Mb and a heterozygosity of 1.45%.The genome was annotated using de novo and homology comparison and further refined with transcriptome data.The genome of O.fragrans was predicted to have 45,542 genes,of which 95.68%were functionally annotated.Genome annotation found 49.35%as the repetitive sequences,with long terminal repeats(LTR)being the richest(28.94%).Genome evolution analysis indicated the evidence of whole-genome duplication 15 million years ago,which contributed to the current content of 45,242 genes.Metabolic analysis revealed that linalool,a monoterpene is the main aroma compound.Based on the genome and transcriptome,we further demonstrated the direct connection between terpene synthases(TPSs)and the rich aromatic molecules in O.fragrans.We identified three new flower-specific TPS genes,of which the expression coincided with the production of linalool.Our results suggest that the high number of TPS genes and the flower tissue-and stage-specific TPS genes expressions might drive the strong unique aroma production of O.fragrans.
基金supported by the National Key Research and Development Program of China (2017YFD0101804)the Scientific and Technological Innovation Projects for the Social Undertakings and the People’s Livelihood in Chongqing (cstc2015shmsztzx80005+1 种基金 cstc2015shms-ztzx80007 cstc2015shms-ztzx80009)
文摘Genome editing offers great advantages in identifying gene function and generating agronomically important mutations in crops. Here,we report that the genome of cabbage(Brassica oleracea var. capitata), an important cruciferous vegetable, can also be precisely edited by a CRISPR/Cas9 system stacked with multiple single-guide RNA-expressing cassettes. When the phytoene desaturase Bo PDS gene was used as the target gene, an albino-phenotype transgenic shoot in T0 Basta-resistant lines was observed, and 37.5% of the transgenic cabbage shoots carried Bo PDS gene mutations as a result of nucleotide deletions at the expected position. Moreover, mutations were detected in sites with the same target sequence in gene Bol016089 which is paralogous to the Bo PDS gene. Our results show that the CRISPR/Cas9 system is a powerful tool for cabbage variety improvement by genome editing.
基金supported by the Australian Research Council(LP190100509)National Natural Science Foundation of China (No. 31671273 and No. 32070396)+1 种基金Key Research and Development Plan of Shaanxi Province (No. 2020ZDLNY01-03)the Chinese Academy of Sciences。
文摘The advent of clustered regularly interspaced short palindromic repeat(CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel(insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
基金National Natural Science Foundation of China(Grant No.31570697)Central Financial Appropriation for Forestry Promotion and Assistance Projects(Grant No.[2016]03).
文摘Anthocyanins are the most widely produced secondary metabolites in plants,and they play an important role in plant growth and reproduction.The nitrogen source is an important factor affecting anthocyanin production,but the nitrogen concentrations on metabolism and the underlying genetic basis remain unclear.In this study,in vitro anthocyanin induction was conducted on Malus spectabilis.The leaf explants were cultivated in media containing different nitrogen concentrations.The results suggested that when the nitrogen contents decreased in limit,the color of leaf explants turned from green to red,and increased anthocyanin accumulation led to a change in phenotype.Furthermore,the content of other flavonoids,such as dihydroquercetin,epicatechin,and catechin,increased under low nitrogen conditions.The transcription levels of the general flavonoid pathway genes,from phenylalanine ammonia lyase(PAL)to anthocyanidin synthase(ANS),were associated with the concentration of corresponding flavonoid compounds and phenotype changes.In particular,the expression level of ANS increased substantially under a low nitrogen treatment,which was significantly and positively correlated with the anthocyanin levels(R2=0.72,P<0.05).The increased expression patterns of anthocyanin pathway genes were similar to that of the transcription factor MYB10.We further verified MYB10 played an important role in the anthocyanin pathway in leaves of Malus spectabilis.These results suggested that we can improve the desirable ornamental plant phenotypes by controlling nitrogen content.This process may offer clues to further development of new agricultural practices.
基金Supported by Natural Science Foundation of Hebei Province (C2004000368, C2005000192) Doctoral Fund of Henan Institute of Science and Technology (20070025).
文摘Main progress of transgenic techniques in apple made in recent years was summarized, and related research achievements in various aspects like transformation method, regenerating ability of explants, strain type and infection conditions of Agrobacterium were reviewed. On this basis, the current bottlenecks in transgenic techniques in apple were put forward.
基金supported by Central University Basic Research Funds(2572014CA27),(2572018DB01)Heilongjiang Province Natural Fund(C200913)
文摘In this paper,the ultrasonic-assisted extraction process of flavonoid compounds from leaves of Amorpha fruticosa is optimized.In single factor experiments,solid/liquid ratios,ultrasonic power,ethanol concentrations and extraction cycles were experimental factors.Box–Behnken central composite design and RSM analyzed the effects of the four factors on the yield of total flavonoids.The optimal extraction parameters were solid/liquid ratio 1:50 g/mL,ultrasonic power 316 W,ethanol concentration 50%,4 extraction cycles.In the optimized condition,the estimated value of the regression model was 66.6456 mg/g while the measured value was 66.4329 mg/g.
基金supported by the National Key R&D Program of China(2018YFD1000406)the National Natural Science Foundation of China(31772350).
文摘Members of the genus Paeonia,which consists of globally renowned ornamentals and traditional medicinal plants with a rich history spanning over 1500 years,are widely distributed throughout the Northern Hemisphere.Since 1900,over 2200 new horticultural Paeonia cultivars have been created by the discovery and breeding of wild species.However,information pertaining to Paeonia breeding is considerably fragmented,with fundamental gaps in knowledge,creating a bottleneck in effective breeding strategies.This review systematically introduces Paeonia germplasm resources,including wild species and cultivars,summarizes the breeding strategy and results of each Paeonia cultivar group,and focuses on recent progress in the isolation and functional characterization of structural and regulatory genes related to important horticultural traits.Perspectives pertaining to the resource protection and utilization,breeding and industrialization of Paeonia in the future are also briefly discussed.
基金supported by the National Key Research and Development Program of China(2016YFA0500503)the Fundamental Research Funds for the Central Universities(2662018PY075)+1 种基金the National Natural Science Foundation of China(31730066,91540112)the Huazhong Agricultural University's Scientific and Technological Self-innovation Foundation(2015RC014).
文摘Seed germination and seedling establishment are important for the reproductive success of plants,but seeds and seedlings typically encounter constantly changing environmental conditions.By inhibiting seed germination and post-germinative growth through the PYR1/PYL/RCAR ABA receptors and PP2C co-receptors,the phytohormone abscisic acid(ABA)prevents premature germination and seedling growth under unfavorable conditions.However,little is known about how the ABA-mediated inhibition of seed germination and seedling establishment is thwarted.Here,we report that ABA Signaling Terminator(ABT),a WD40 protein,efficiently switches off ABA signaling and is critical for seed germination and seedling establishment.ABT is induced by ABA in a PYR1/PYL/RCAR-PP2C-dependent manner.Overexpression of ABT promotes seed germination and seedling greening in the presence of ABA,whereas knockout of ABT has the opposite effect.We found that ABT interacts with the PYR1/PYL/RCAR and PP2C proteins,interferes with the interaction between PYR1/PYL4 and ABI1/ABI2,and hampers the inhibition of ABI1/ABI2 by ABA-bound PYR1/PYL4,thereby terminating ABA signaling.Taken together,our results reveal a core mechanism of ABA signaling termination that is critical for seed germination and seedling establishment in Arabidopsis.
基金the National Natural Science Foundation of China(21975084,51672089)Special Funding on Applied Science and Technology in Guangdong(2017B020238005)+2 种基金the State Key Laboratory of Advanced Technology for Material Synthesis and Processing(Wuhan University of Technology)(2015-KF-7)State Scholarship Fund of China Scholarship Council(200808440114)the Ding Ying Talent Project of South China Agricultural University for their support
文摘Converting solar energy into clean and sustainable chemical fuels is a promising strategy for exploiting renewable energy.The application of photocatalytic water splitting technology in hydrogen production is important for sustainable energy development and environmental protection.In this study,for the first time,2D Cu7S4 co-catalysts were coupled on the surface of a CdS nanosheet photocatalyst by a one-step ultrasonic-assisted electrostatic self-assembly method at room temperature.The as-fabricated 2D^-2D CdS/Cu7S4 layered heterojunctions were demonstrated to be advanced composite photocatalysts that enhance the water splitting efficiency toward hydrogen production.The highest hydrogen evolution rate of the 2D^-2D CdS/2%Cu7S4 binary heterojunction photocatalyst was up to 27.8 mmol g^-1 h^-1 under visible light irradiation,with an apparent quantum efficiency of 14.7%at 420 nm,which was almost 10.69 times and 2.65 times higher than those of pure CdS nanosheets(2.6 mmol g^-1 h^-1)and CdS-2%CuS(10.5 mmol g^-1 h^-1),respectively.The establishment of the CdS/Cu7S4 binary-layered heterojunction could not only enhance the separation of photogenerated electron-hole(e--h+)pairs,improve the transfer of photo-excited electrons,and prolong the life-span of photo-generated electrons,but also enhance the light absorption and hydrogen-evolution kinetics.All these factors are important for the enhancement of the photocatalytic activity.Expectedly,the 2D^-2D interface coupling strategy based on CdS NSs can be extensively exploited to improve the hydrogen-evolution activity over various kinds of conventional semiconductor NSs.