We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be ...We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be adapted processes with respect to the common noise filtration.Semi closed-loop strategies are introduced,and following the dynamic programming approach in(Pham and Wei,Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics,2016),we solve the problem and characterize time-consistent optimal control by means of a system of decoupled backward stochastic Riccati differential equations.We present several financial applications with explicit solutions,and revisit,in particular,optimal tracking problems with price impact,and the conditional mean-variance portfolio selection in an incomplete market model.展开更多
基金work is part of the ANR project CAESARS(ANR-15-CE05-0024)lso supported by FiME(Finance for Energy Market Research Centre)and the“Finance et Developpement Durable-Approches Quantitatives”EDF-CACIB Chair。
文摘We consider the optimal control problem for a linear conditional McKeanVlasov equation with quadratic cost functional.The coefficients of the system and the weighting matrices in the cost functional are allowed to be adapted processes with respect to the common noise filtration.Semi closed-loop strategies are introduced,and following the dynamic programming approach in(Pham and Wei,Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics,2016),we solve the problem and characterize time-consistent optimal control by means of a system of decoupled backward stochastic Riccati differential equations.We present several financial applications with explicit solutions,and revisit,in particular,optimal tracking problems with price impact,and the conditional mean-variance portfolio selection in an incomplete market model.