In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some ...In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.展开更多
This paper presents the coseismic displacement and preseismic deformation fields of the Lushan MS7.0 earthquake that occurred on April 20,2013.The results are based on GPS observations along the Longmenshan fault and ...This paper presents the coseismic displacement and preseismic deformation fields of the Lushan MS7.0 earthquake that occurred on April 20,2013.The results are based on GPS observations along the Longmenshan fault and within its vicinity.The coseismic displacement and preseismic GPS results indicate that in the strain release of this earthquake,the thrust rupture is dominant and the laevorotation movement is secondary.Furthermore,we infer that any possible the rupture does not reach the earth’s surface,and the seismogenic fault is most likely one fault to the east of the Guanxian-Anxian fault.Some detailed results are obtainable.(1)The southern segment of the Longmenshan fault is locked preceding the Lushan earthquake.After the Wenchuan earthquake,the strain accumulation rate in the southeast direction accelerates in the epicenter of the Lushan earthquake,and the angle between the principal compressional strain and the seismogenic fault indicates that a sinistral deformation background in the direction of the seismogenic fault precedes the Lushan earthquake.Therefore,it is evident that the Wenchuan MS8.0 earthquake accelerated the pregnancy of the Lushan earthquake.(2)The coseismic displacements reflected by GPS data are mainly located in a region that is 230 km(NW direction)×100 km(SW direction),and coseismic displacements larger than 10 mm lie predominantly in a100-km region(NW direction).(3)On a large scale,the coseismic displacement shows thrust characteristics,but the associated values are remarkably small in the near field(within 70 km)of the earthquake fault.Meanwhile,the thrust movement in this70-km region does not correspond with the attenuation characteristics of the strain release,indicating that the rupture of this earthquake does not reach the earth’s surface.(4)The laevorotation movements are remarkable in the 50-km region,which is located in the hanging wall that is close to the earthquake fault,and the corresponding values in this case correlate with the attenuation characteristics of the stra展开更多
Water and sediment transport from rivers to oceans is of primary importance in global geochemical cycle.Against the background of global change,this study examines the changes in water and sediment fluxes and their dr...Water and sediment transport from rivers to oceans is of primary importance in global geochemical cycle.Against the background of global change,this study examines the changes in water and sediment fluxes and their drivers for 4307 large rivers worldwide(basin area!1000 km2)based on the longest available records.Here we find that 24%of the world’s large rivers experienced significant changes in water flux and 40%in sediment flux,most notably declining trends in water and sediment fluxes in Asia’s large rivers and an increasing trend in suspended sediment concentrations in the Amazon River.In particular,nine binary patterns of changes in water-sediment fluxes are interpreted in terms of climate change and human impacts.The change of precipitation is found significantly correlated to the change of water flux in 71%of the world’s large rivers,while dam operation and irrigation rather control the change of sediment flux in intensively managed catchments.Globally,the annual water flux from rivers to sea of the recent years remained stable compared with the long-time average annual value,while the sediment flux has decreased by 20.8%.展开更多
In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsion...In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsions,in Pickering emulsions,solid microparticles or nanoparticles that localize at the interface between liquids are used as stabilizers,instead of surfactants,to enhance the droplet lifetime.Furthermore,Pickering emulsions show higher stability,lower toxicity,and stimuli-responsiveness,compared with emulsions that are stabilized by surfactants.Therefore,they can be considered attractive components for various uses,such as photocatalysis and the preparation of new materials.Moreover,the nanoparticle morphology strongly influences Pickering emulsion stability as well as the potential utilization of such emulsions.Here,we review recent findings concerning Pickering emulsions,with a particular focus on how the nanoparticles morphology(i.e.,cube,ellipsoid,nanosheet,sphere,cylinder,rod,peanut)influences the type and stability of such emulsions,and their current applications in different fields such as antibacterial activity,protein recognition,catalysis,photocatalysis,and water purification.展开更多
Cellulose, the most abundant organic polymer on Earth, is a sustainable source of carbon to use as a negative electrode for sodium ion batteries. Here, hard carbons(HC) prepared by cellulose pyrolysis were investigate...Cellulose, the most abundant organic polymer on Earth, is a sustainable source of carbon to use as a negative electrode for sodium ion batteries. Here, hard carbons(HC) prepared by cellulose pyrolysis were investigated with varying pyrolysis temperature from 700 °C to 1600 °C. Characterisation methods such as Small Angle X-ray Scattering(SAXS) measurements and N2adsorption were performed to analyse porosity differences between the samples. The graphene sheet arrangements were observed by transmission electron microscopy(TEM): an ordering of the graphene sheets is observed at temperatures above 1150 °C and small crystalline domains appear over 1400 °C. As the graphene sheets start to align, the BET surface area decreases and the micropore size increases. To correlate hard carbon structures and electrochemical performances, different tests in Na//HC cells with 1 M NaPF6ethylene carbonate/dimethyl carbonate(EC/DMC) were performed. Samples pyrolysed from 1300 °C to 1600 °C showed a 300 m Ah/g reversible capacity at C/10 rate(where C = 372 mA/g) with an excellent stability in cycling and a very good initial Coulombic efficiency of up to 84%. Furthermore, hard carbons showed an excellent rate capability where sodium extraction rate varies from C/10 to 5C. At 5C more than 80% of reversible capacity remains stable for hard carbons synthesized from 1000 °C to 1600 °C.展开更多
For harmful ground collapse and its special deformation characteristics,which causes SAR images to lose coherence,InSAR technology cannot be applied in monitoring surface collapse in mining areas.We took the Shenmu mi...For harmful ground collapse and its special deformation characteristics,which causes SAR images to lose coherence,InSAR technology cannot be applied in monitoring surface collapse in mining areas.We took the Shenmu mining area in northern Shaanxi province as an example to study subsidence in mining areas and proposed an interpolated multi-view processing method.The results show that this method can improve the detectable deformation gradient to a certain extent and can become a good reference value for monitoring large scale gradient deformation.We also analyzed the rules for temporal decorrelation in mining.展开更多
Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fraction...Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.展开更多
We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial ...We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial acetic acid. Fabrication of random networks of purified copper nanowires leads to flexible transparent electrodes with excellent optoelectronic performances (e.g., 55 Ω/sq. at 94% transparency). The process is carried out at room temperature and no post-treatment is necessary. Hybrid materials with the conductive polymer PEDOT:PSS show similar properties (e.g., 46 Ω/sq, at 93% transparency), with improved mechanical properties. Both electrodes were integrated in capacitive touch sensors.展开更多
In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The m...In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.展开更多
Offset geomorphic features and deformed late Quaternary strata indicate active deformation along the Langshan-Seertengshan piedmont fault (LSPF), one of the most active faults in the Hetao fault zone in Inner Mongol...Offset geomorphic features and deformed late Quaternary strata indicate active deformation along the Langshan-Seertengshan piedmont fault (LSPF), one of the most active faults in the Hetao fault zone in Inner Mongolia, North China. The widespread occurrence of bedrock fault scarps along the LSPF offers excellent opportunity to examine the faulting history. Using cosmogenic ^10Be exposure dating, we measured the exposure ages of the western Langshankou scarp, located in the middle segment of the LSPF. Our data revealed at least two earthquakes that occurred at 22.2±3.3 Ira and 7.2±2.4 ka, respectively. These events are consistent with previous paleoseismic trench studies. The regression of the relationship between the age and sampling height along the scarp yield a fault slip rate of 0.10 ±0.05/-0.06 mm/yr, which is significantly lower than the average post-late Pleistocene fault slip rate of ~1 mm/yr, as estimated from the offset of the T2 terraces by previous studies. This indicates that the slip of the LSPF may have been accommodated by other fault branches.展开更多
The objective of the Apollon 10 PW project is the generation of 10 PW peak power pulses of 15 fs at 1 shot min^(-1). In this paper a brief update on the current status of the Apollon project is presented, followed by ...The objective of the Apollon 10 PW project is the generation of 10 PW peak power pulses of 15 fs at 1 shot min^(-1). In this paper a brief update on the current status of the Apollon project is presented, followed by a more detailed presentation of our experimental and theoretical investigations of the temporal characteristics of the laser. More specifically the design considerations as well as the technological and physical limitations to achieve the intended pulse duration and contrast are discussed.展开更多
Two-dimensional graphene,carbon nanotubes,and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics.Although these system...Two-dimensional graphene,carbon nanotubes,and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics.Although these systems share a similar underlying electronic structure,whose exact details depend on confi nement effects,crucial differences emerge when disorder comes into play.In this review,we consider the transport properties of these materials,with particular emphasis on the case of graphene nanoribbons.After summarizing the electronic and transport properties of defect-free systems,we focus on the effects of a model disorder potential(Anderson-type),and illustrate how transport properties are sensitive to the underlying symmetry.We provide analytical expressions for the elastic mean free path of carbon nanotubes and graphene nanoribbons,and discuss the onset of weak and strong localization regimes,which are genuinely dependent on the transport dimensionality.We also consider the effects of edge disorder and roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.展开更多
When light absorbed by plants exceeds the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly de-epoxidized to zeaxanthin in the so-called xanthophyll cycle. Zeaxanthin plays a key role in the prote...When light absorbed by plants exceeds the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly de-epoxidized to zeaxanthin in the so-called xanthophyll cycle. Zeaxanthin plays a key role in the protection of photosynthetic organisms against excess light, by promoting rapidly reversible (qE) and long-term (ql) quenching of excited chlorophylls, and preventing lipid oxidation. The photoprotective role of zeaxanthin, either free or bound to light-harvesting complexes (Lhcs), has been investigated by using mutants lacking Chl b (chl) and/or specific xanthophyll species (npq, lut2). The chl mutation causes (1) the absence of Lhcb proteins; (2) strong reduction of the feedback deexcitation (qE); and (3) accumulation of xanthophylls as free pigments into thylakoids. Chl mutants showed extreme sensitivity to photo-oxidative stress in high light, due to higher singlet oxygen (102) release. The double mutant chlnpql was more sensitive to photo-oxidation than chl, showing that zeaxanthin does protect lipids even when free in the membrane. Nevertheless, lack of zeaxanthin had a much stronger impact on the level of lipid peroxidation in Lhcs-containing plants (WTvs npql) with respect to Lhc-less plants (chl vs chlnpql), implying that its protective effect is enhanced by interaction with antenna proteins. It is proposed that the antioxidant capacity of zeaxanthin is empowered in the presence of PSII- LHCs-Zea complexes, while its effect on enhancement of qE only provides a minor contribution. Comparison of the sensitivity of WT vs npql plants to exogenous 102 suggests that besides the scavenging of 102, at least one additional mechanism is involved in chloroplast photoprotection.展开更多
Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan ...Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.展开更多
Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling wi...Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.展开更多
We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this nu...We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.展开更多
We report that 316L austenitic stainless steel fabricated by direct laser deposition(DLD),an additive manufacturing(AM)process,have a higher yield strength than that of conventional 316L while keeping high ductility.M...We report that 316L austenitic stainless steel fabricated by direct laser deposition(DLD),an additive manufacturing(AM)process,have a higher yield strength than that of conventional 316L while keeping high ductility.More interestingly,no clear anisotropy in tensile properties was observed between the building and the scanning direction of the 3D printed steel.Metallographic examination of the as-built parts shows a heterogeneous solidification cellular microstructure.Transmission electron microscopy observations coupled with Energy Dispersive X-ray Spectrometry(EDS)reveal the presence of chemical micro-segregation correlated with high dislocation density at cell boundaries as well as the in-situ formation of well-dispersed oxides and transition-metal-rich precipitates.The hierarchical heterogeneous microstructure in the AM parts induces excellent strength of the 316L stainless steel while the low staking fault energy of the as-built 316L promotes the occurrence of abundant deformation twinning,in the origin of the high ductility of the AM steel.Without additional post-process treatments,the AM 316L proves that it can be used as a structural material or component for repair in mechanical construction.展开更多
Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,...Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future.展开更多
We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,...We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,to better understand upper mantle deformation.Differential travel-times in the pair of stations with appropriate weighting for each station are used in the inversion.Our results are consistent with previous tomography that show a high velocity anomaly beneath the Sichuan basin and a high velocity anomaly in the transition zone beneath the Yangtze Craton.However,the resolution of mantle heterogeneity provides new insight into the tectonic framework of subduction of Burmese lithosphere in the west part of the study region and subduction of oceanic lithosphere in the east.In the subduction realm,west of 107°E,a significant fast S-wave anomaly is located on the southeast of Sichuan Basin.East of 107°E,and two narrow and discontinuous fast S-wave anomalies occur at a depth of 400-600 km beneath the middle of the South China block overlain by the pronounced low S-wave anomalies at a depth of 100 and 400 km.If the fast anomalies located in the mantle transition zone represent stagnant slabs,their fragmented nature may suggest that they could be produced by different episodes of subduction beneath western Pacific island and the above slow velocity anomaly may associated with the back-arc regions of ongoing subduction.In addition,tomography also reveals an anomalously high S-wave velocity continental root extends eastward to a depth 400 km beneath the eastern Sichuan Basin.This anomaly may be related to eastern extrusion of Indian lithosphere associated with the collision of India and Eurasia.Moreover,our results also show large slow anomalies beneath the Red River fault region connected to deeper anomalies beneath the South China Fold Belt and South China Sea.AH these observations are consistent with the scenario that the South China block has been built by both of subduction of Paleopacific plate and ea展开更多
文摘In the 2015 review paper‘Petawatt Class Lasers Worldwide’a comprehensive overview of the current status of highpower facilities of>200 TW was presented.This was largely based on facility specifications,with some description of their uses,for instance in fundamental ultra-high-intensity interactions,secondary source generation,and inertial confinement fusion(ICF).With the 2018 Nobel Prize in Physics being awarded to Professors Donna Strickland and Gerard Mourou for the development of the technique of chirped pulse amplification(CPA),which made these lasers possible,we celebrate by providing a comprehensive update of the current status of ultra-high-power lasers and demonstrate how the technology has developed.We are now in the era of multi-petawatt facilities coming online,with 100 PW lasers being proposed and even under construction.In addition to this there is a pull towards development of industrial and multi-disciplinary applications,which demands much higher repetition rates,delivering high-average powers with higher efficiencies and the use of alternative wavelengths:mid-IR facilities.So apart from a comprehensive update of the current global status,we want to look at what technologies are to be deployed to get to these new regimes,and some of the critical issues facing their development.
基金supported by the National Key Technology R&D Program in the 12th Five-year Plan of China(2012BAK19B01)the National Natural Science Foundation of China(41274008 and 41104004)+2 种基金the Basic Research Project of Institute of Earthquake Science of China Earthquake Administration(2011IES010101)the Specific Fund of Seismic Industry of China Earthquake Administration(201008007)the Scientific Investigation Projects of the Wenchuan and Lushan Earthquakes,CEA
文摘This paper presents the coseismic displacement and preseismic deformation fields of the Lushan MS7.0 earthquake that occurred on April 20,2013.The results are based on GPS observations along the Longmenshan fault and within its vicinity.The coseismic displacement and preseismic GPS results indicate that in the strain release of this earthquake,the thrust rupture is dominant and the laevorotation movement is secondary.Furthermore,we infer that any possible the rupture does not reach the earth’s surface,and the seismogenic fault is most likely one fault to the east of the Guanxian-Anxian fault.Some detailed results are obtainable.(1)The southern segment of the Longmenshan fault is locked preceding the Lushan earthquake.After the Wenchuan earthquake,the strain accumulation rate in the southeast direction accelerates in the epicenter of the Lushan earthquake,and the angle between the principal compressional strain and the seismogenic fault indicates that a sinistral deformation background in the direction of the seismogenic fault precedes the Lushan earthquake.Therefore,it is evident that the Wenchuan MS8.0 earthquake accelerated the pregnancy of the Lushan earthquake.(2)The coseismic displacements reflected by GPS data are mainly located in a region that is 230 km(NW direction)×100 km(SW direction),and coseismic displacements larger than 10 mm lie predominantly in a100-km region(NW direction).(3)On a large scale,the coseismic displacement shows thrust characteristics,but the associated values are remarkably small in the near field(within 70 km)of the earthquake fault.Meanwhile,the thrust movement in this70-km region does not correspond with the attenuation characteristics of the strain release,indicating that the rupture of this earthquake does not reach the earth’s surface.(4)The laevorotation movements are remarkable in the 50-km region,which is located in the hanging wall that is close to the earthquake fault,and the corresponding values in this case correlate with the attenuation characteristics of the stra
基金supported by the National Natural Science Foundation of China (51721006 and 91647211)
文摘Water and sediment transport from rivers to oceans is of primary importance in global geochemical cycle.Against the background of global change,this study examines the changes in water and sediment fluxes and their drivers for 4307 large rivers worldwide(basin area!1000 km2)based on the longest available records.Here we find that 24%of the world’s large rivers experienced significant changes in water flux and 40%in sediment flux,most notably declining trends in water and sediment fluxes in Asia’s large rivers and an increasing trend in suspended sediment concentrations in the Amazon River.In particular,nine binary patterns of changes in water-sediment fluxes are interpreted in terms of climate change and human impacts.The change of precipitation is found significantly correlated to the change of water flux in 71%of the world’s large rivers,while dam operation and irrigation rather control the change of sediment flux in intensively managed catchments.Globally,the annual water flux from rivers to sea of the recent years remained stable compared with the long-time average annual value,while the sediment flux has decreased by 20.8%.
文摘In recent years,Pickering emulsions and their applications have attracted a great deal of attention due to their special features,which include easy preparation and enhanced stability.In contrast to classical emulsions,in Pickering emulsions,solid microparticles or nanoparticles that localize at the interface between liquids are used as stabilizers,instead of surfactants,to enhance the droplet lifetime.Furthermore,Pickering emulsions show higher stability,lower toxicity,and stimuli-responsiveness,compared with emulsions that are stabilized by surfactants.Therefore,they can be considered attractive components for various uses,such as photocatalysis and the preparation of new materials.Moreover,the nanoparticle morphology strongly influences Pickering emulsion stability as well as the potential utilization of such emulsions.Here,we review recent findings concerning Pickering emulsions,with a particular focus on how the nanoparticles morphology(i.e.,cube,ellipsoid,nanosheet,sphere,cylinder,rod,peanut)influences the type and stability of such emulsions,and their current applications in different fields such as antibacterial activity,protein recognition,catalysis,photocatalysis,and water purification.
基金supported by Direction Générale de l’Armement(DGA)
文摘Cellulose, the most abundant organic polymer on Earth, is a sustainable source of carbon to use as a negative electrode for sodium ion batteries. Here, hard carbons(HC) prepared by cellulose pyrolysis were investigated with varying pyrolysis temperature from 700 °C to 1600 °C. Characterisation methods such as Small Angle X-ray Scattering(SAXS) measurements and N2adsorption were performed to analyse porosity differences between the samples. The graphene sheet arrangements were observed by transmission electron microscopy(TEM): an ordering of the graphene sheets is observed at temperatures above 1150 °C and small crystalline domains appear over 1400 °C. As the graphene sheets start to align, the BET surface area decreases and the micropore size increases. To correlate hard carbon structures and electrochemical performances, different tests in Na//HC cells with 1 M NaPF6ethylene carbonate/dimethyl carbonate(EC/DMC) were performed. Samples pyrolysed from 1300 °C to 1600 °C showed a 300 m Ah/g reversible capacity at C/10 rate(where C = 372 mA/g) with an excellent stability in cycling and a very good initial Coulombic efficiency of up to 84%. Furthermore, hard carbons showed an excellent rate capability where sodium extraction rate varies from C/10 to 5C. At 5C more than 80% of reversible capacity remains stable for hard carbons synthesized from 1000 °C to 1600 °C.
基金funded by the National Natural Science Foundation of China (Nos.40902081,and 40802075)the Key Project of the Ministry of Land & Resources,China (No.1212010914015)
文摘For harmful ground collapse and its special deformation characteristics,which causes SAR images to lose coherence,InSAR technology cannot be applied in monitoring surface collapse in mining areas.We took the Shenmu mining area in northern Shaanxi province as an example to study subsidence in mining areas and proposed an interpolated multi-view processing method.The results show that this method can improve the detectable deformation gradient to a certain extent and can become a good reference value for monitoring large scale gradient deformation.We also analyzed the rules for temporal decorrelation in mining.
文摘Recent advances in the proteomic field have allowed high-throughput experiments to be conducted on chloroplast samples. Many proteomic investigations have focused on either whole chloroplast or sub-plastidial fractions. To date, the Plant Protein Database (PPDB, Sun et al., 2009) presents the most exhaustive chloroplast proteome available online. However, the accurate localization of many proteins that were identified in different sub-plastidial compartments remains hypothetical. Ferro et al. (2009) went a step further into the knowledge of Arabidopsis thaliana chloroplast proteins with regards to their accurate localization within the chloroplast by using a semi-quantitative proteomic approach known as spectral counting. Their proteomic strategy was based on the accurate mass and time tags (AMT) database approach and they built up AT_CHLORO, a comprehensive chloroplast proteome database with sub-plastidial localization and curated information on envelope proteins. Comparing these two extensive databases, we focus here on about 100 enzymes involved in the synthesis of chloroplast-specific isoprenoids. Well known pathways (i.e. compartmentation of the methyl erythritol phosphate biosynthetic pathway, of tetrapyrroles and chlorophyll biosynthesis and breakdown within chloroplasts) validate the spectral counting-based strategy. The same strategy was then used to identify the precise localization of the biosynthesis of carotenoids and prenylquinones within chloroplasts (i.e. in envelope membranes, stroma, and/or thylakoids) that remains unclear until now.
文摘We demonstrate the hydrothermal synthesis of long copper nanowires based on a simple protocol. We show that the purification of the nanowires is very important and can be achieved easily by wet treatment with glacial acetic acid. Fabrication of random networks of purified copper nanowires leads to flexible transparent electrodes with excellent optoelectronic performances (e.g., 55 Ω/sq. at 94% transparency). The process is carried out at room temperature and no post-treatment is necessary. Hybrid materials with the conductive polymer PEDOT:PSS show similar properties (e.g., 46 Ω/sq, at 93% transparency), with improved mechanical properties. Both electrodes were integrated in capacitive touch sensors.
基金support of the Chinese Academy of Sciences through the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA15020100)support by ASI, under the dedicated eXTP agreements and agreement ASI-INAF (Grant No. 2017-14-H.O.)+3 种基金by INAF and INFN under project REDSOXsupport from the Deutsche Zentrum für Luft- und Raumfahrt, the German Aerospce Center (DLR)support of Science Centre (Grant No. 2013/10/M/ST9/00729)support from MINECO (Grant No. ESP2017-82674-R) and FEDER funds
文摘In this paper we present the enhanced X-ray Timing and Polarimetry mission—eXTP. eXTP is a space science mission designed to study fundamental physics under extreme conditions of density, gravity and magnetism. The mission aims at determining the equation of state of matter at supra-nuclear density, measuring effects of QED, and understanding the dynamics of matter in strong-field gravity. In addition to investigating fundamental physics, eXTP will be a very powerful observatory for astrophysics that will provide observations of unprecedented quality on a variety of galactic and extragalactic objects. In particular, its wide field monitoring capabilities will be highly instrumental to detect the electro-magnetic counterparts of gravitational wave sources.The paper provides a detailed description of:(1) the technological and technical aspects, and the expected performance of the instruments of the scientific payload;(2) the elements and functions of the mission, from the spacecraft to the ground segment.
基金supported by the National Natural Science Foundation of China (Grant No.41171001)the 1:50000 Active Fault Mapping of Langshan Piedmont Fault (Grant No.201408023)the Basic Research Business Foundation of the China Earthquake Administration (Grant No.ZDJ2012-02)
文摘Offset geomorphic features and deformed late Quaternary strata indicate active deformation along the Langshan-Seertengshan piedmont fault (LSPF), one of the most active faults in the Hetao fault zone in Inner Mongolia, North China. The widespread occurrence of bedrock fault scarps along the LSPF offers excellent opportunity to examine the faulting history. Using cosmogenic ^10Be exposure dating, we measured the exposure ages of the western Langshankou scarp, located in the middle segment of the LSPF. Our data revealed at least two earthquakes that occurred at 22.2±3.3 Ira and 7.2±2.4 ka, respectively. These events are consistent with previous paleoseismic trench studies. The regression of the relationship between the age and sampling height along the scarp yield a fault slip rate of 0.10 ±0.05/-0.06 mm/yr, which is significantly lower than the average post-late Pleistocene fault slip rate of ~1 mm/yr, as estimated from the offset of the T2 terraces by previous studies. This indicates that the slip of the LSPF may have been accommodated by other fault branches.
基金financial support from the ILE-APOLLON 07-CPER 017-01 contract
文摘The objective of the Apollon 10 PW project is the generation of 10 PW peak power pulses of 15 fs at 1 shot min^(-1). In this paper a brief update on the current status of the Apollon project is presented, followed by a more detailed presentation of our experimental and theoretical investigations of the temporal characteristics of the laser. More specifically the design considerations as well as the technological and physical limitations to achieve the intended pulse duration and contrast are discussed.
基金This work was partially supported by the ANR/PNANO project ACCENT,by the FP7/ICT/FET GRAND projectby the“Graphene Project”of CARNOT Institute-Leti+2 种基金by the European Union project“Carbon Nanotube Devices at the Quantum Limit”(CARDEQ)under contract No.IST-021285by the Volkswagen Stiftung under Grant No.I/78340by the DFG Priority Program“Quantum Transport at the Molecular Scale”SPP1243 and by DAAD。
文摘Two-dimensional graphene,carbon nanotubes,and graphene nanoribbons represent a novel class of low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics.Although these systems share a similar underlying electronic structure,whose exact details depend on confi nement effects,crucial differences emerge when disorder comes into play.In this review,we consider the transport properties of these materials,with particular emphasis on the case of graphene nanoribbons.After summarizing the electronic and transport properties of defect-free systems,we focus on the effects of a model disorder potential(Anderson-type),and illustrate how transport properties are sensitive to the underlying symmetry.We provide analytical expressions for the elastic mean free path of carbon nanotubes and graphene nanoribbons,and discuss the onset of weak and strong localization regimes,which are genuinely dependent on the transport dimensionality.We also consider the effects of edge disorder and roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.
文摘When light absorbed by plants exceeds the capacity of photosynthesis, the xanthophyll violaxanthin is reversibly de-epoxidized to zeaxanthin in the so-called xanthophyll cycle. Zeaxanthin plays a key role in the protection of photosynthetic organisms against excess light, by promoting rapidly reversible (qE) and long-term (ql) quenching of excited chlorophylls, and preventing lipid oxidation. The photoprotective role of zeaxanthin, either free or bound to light-harvesting complexes (Lhcs), has been investigated by using mutants lacking Chl b (chl) and/or specific xanthophyll species (npq, lut2). The chl mutation causes (1) the absence of Lhcb proteins; (2) strong reduction of the feedback deexcitation (qE); and (3) accumulation of xanthophylls as free pigments into thylakoids. Chl mutants showed extreme sensitivity to photo-oxidative stress in high light, due to higher singlet oxygen (102) release. The double mutant chlnpql was more sensitive to photo-oxidation than chl, showing that zeaxanthin does protect lipids even when free in the membrane. Nevertheless, lack of zeaxanthin had a much stronger impact on the level of lipid peroxidation in Lhcs-containing plants (WTvs npql) with respect to Lhc-less plants (chl vs chlnpql), implying that its protective effect is enhanced by interaction with antenna proteins. It is proposed that the antioxidant capacity of zeaxanthin is empowered in the presence of PSII- LHCs-Zea complexes, while its effect on enhancement of qE only provides a minor contribution. Comparison of the sensitivity of WT vs npql plants to exogenous 102 suggests that besides the scavenging of 102, at least one additional mechanism is involved in chloroplast photoprotection.
基金the National Science and Technology Supporting Program(2012BAK15B02)the National Natural Science Foundation Program(50938006)the special program for Science Field Investigation on Lushan M7.0 Earthquake from the China Earthquake Administration
文摘Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.
基金supported by the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)funding from EPRSC(Grant Nos.EP/E035728,EP/C003586,and EP/P010059/1)supported by the National Sciences and Engineering Research Council of Canada(NSERC)and Compute Canada(Job:pve-323-ac,PA).
文摘Realizing the full potential of ultrahigh-intensity lasers for particle and radiation generation will require multi-beam arrangements due to technology limitations.Here,we investigate how to optimize their coupling with solid targets.Experimentally,we show that overlapping two intense lasers in a mirror-like configuration onto a solid with a large preplasma can greatly improve the generation of hot electrons at the target front and ion acceleration at the target backside.The underlying mechanisms are analyzed through multidimensional particle-in-cell simulations,revealing that the self-induced magnetic fields driven by the two laser beams at the target front are susceptible to reconnection,which is one possible mechanism to boost electron energization.In addition,the resistive magnetic field generated during the transport of the hot electrons in the target bulk tends to improve their collimation.Our simulations also indicate that such effects can be further enhanced by overlapping more than two laser beams.
基金funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No.871124 Laserlab-Europeby Grant No.ANR-17-CE30-0026-Pinnacle from the Agence Nationale de la Recherche.
文摘We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA.
基金supported financially by the French Alternative Energies and Atomic Energy Commissionpartially funded by the ANR under contract number(No.ANR-10EQUIPEX-37).
文摘We report that 316L austenitic stainless steel fabricated by direct laser deposition(DLD),an additive manufacturing(AM)process,have a higher yield strength than that of conventional 316L while keeping high ductility.More interestingly,no clear anisotropy in tensile properties was observed between the building and the scanning direction of the 3D printed steel.Metallographic examination of the as-built parts shows a heterogeneous solidification cellular microstructure.Transmission electron microscopy observations coupled with Energy Dispersive X-ray Spectrometry(EDS)reveal the presence of chemical micro-segregation correlated with high dislocation density at cell boundaries as well as the in-situ formation of well-dispersed oxides and transition-metal-rich precipitates.The hierarchical heterogeneous microstructure in the AM parts induces excellent strength of the 316L stainless steel while the low staking fault energy of the as-built 316L promotes the occurrence of abundant deformation twinning,in the origin of the high ductility of the AM steel.Without additional post-process treatments,the AM 316L proves that it can be used as a structural material or component for repair in mechanical construction.
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No. 2012BAK15B01-03)the National Science & Technology Major Project (Grant No. 2011ZX06002-010-15)
文摘Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future.
基金supported by National Natural Science Foundation of China(Grand No.41404042,41504071,41274123)Postdoctoral Science Foundation of China(Grand Nos.2014M552147, 2015T80888)Innovation drive Foundation of Central South University(Grand No.2016CX005)
文摘We applied the finite frequency tomography method to S wave data recorded by 350 broadband stations beneath the South China Block(SCB) and its surroundings from earthquakes occurring between July 2007 and July 2010,to better understand upper mantle deformation.Differential travel-times in the pair of stations with appropriate weighting for each station are used in the inversion.Our results are consistent with previous tomography that show a high velocity anomaly beneath the Sichuan basin and a high velocity anomaly in the transition zone beneath the Yangtze Craton.However,the resolution of mantle heterogeneity provides new insight into the tectonic framework of subduction of Burmese lithosphere in the west part of the study region and subduction of oceanic lithosphere in the east.In the subduction realm,west of 107°E,a significant fast S-wave anomaly is located on the southeast of Sichuan Basin.East of 107°E,and two narrow and discontinuous fast S-wave anomalies occur at a depth of 400-600 km beneath the middle of the South China block overlain by the pronounced low S-wave anomalies at a depth of 100 and 400 km.If the fast anomalies located in the mantle transition zone represent stagnant slabs,their fragmented nature may suggest that they could be produced by different episodes of subduction beneath western Pacific island and the above slow velocity anomaly may associated with the back-arc regions of ongoing subduction.In addition,tomography also reveals an anomalously high S-wave velocity continental root extends eastward to a depth 400 km beneath the eastern Sichuan Basin.This anomaly may be related to eastern extrusion of Indian lithosphere associated with the collision of India and Eurasia.Moreover,our results also show large slow anomalies beneath the Red River fault region connected to deeper anomalies beneath the South China Fold Belt and South China Sea.AH these observations are consistent with the scenario that the South China block has been built by both of subduction of Paleopacific plate and ea