期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Sedimentary and tectonic evolution of the Banquan pull-apart basin and implications for late Cenozoic dextral strike-slip movement of the Tanlu Fault Zone
1
作者 Peng SHU Xiwei XU +11 位作者 Shaoying FENG Baojin LIU Kang LI Paul TAPPONNIER Xiaojuan DENG Guihua CHEN Nuan XIA Hongtai XU Jingjing QIN Fubing HE Yan MA Rongzhang ZHENG 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第4期797-820,共24页
The Banquan Basin is a pull-apart basin with the largest scale and the most prominent structure due to dextral slip of the Tanlu Fault Zone(TLFZ) in late Cenozoic. The depositional history of the basin records the sta... The Banquan Basin is a pull-apart basin with the largest scale and the most prominent structure due to dextral slip of the Tanlu Fault Zone(TLFZ) in late Cenozoic. The depositional history of the basin records the start time and evolution of the right-lateral strike-slip movement of the TLFZ. This paper studies the sedimentary and tectonic evolution of the Banquan Basin by seismic reflection exploration, borehole detection and cosmogenic nuclide chronology. We analyze the coupling relationship between the pull-apart basin and the strike-slip fault and discuss the start time and tectonic significance of the right-lateral strikeslip of the TLFZ. Our study indicates that the Banquan Basin has undergone three evolutionary stages: weak rifting during the pre-pull-apart period, strong extension during the syn-pull-apart period and subsidence during the post-pull-apart period. This implies that the TLFZ, which controls the evolution of the basin, experienced an evolutionary process of weak activity,intensified activity and migration of activity toward the central basin. The sedimentary filling of the basin has strong response to the episodic pull-apart and extension of the basin. Lying upon the basement of the basin, a thin layer of Miocene mudstone slowly accumulated due to local rifting before the strong pull-apart event. Along with the dextral slipping and pull-apart process, the basin was filled with alluvial fan facies, fluvial facies and floodplain facies strata from bottom to top. The latest tectonic movement of the TLFZ in the North China Block in late Cenozoic was dominated by episodic dextral strike-slip motion, and this deformation pattern started at 4.01±1.27 Ma. The latest tectonic deformation in North China since late Cenozoic was governed by eastward extrusion and tectonic orogenesis of the eastern margin of the Qinghai-Xizang Plateau since late Miocene. The eastward thrusting of the Liupanshan fault zone and sinistral shearing of the Qinling fault zone led to the anticlockwise rotation and pushing of se 展开更多
关键词 Banquan Basin Strike-slip movement Pull-apart basin Tanlu Fault Zone North China Plain Start time
原文传递
Interseismic slip distribution and locking characteristics of the mid-southern segment of the Tanlu fault zone
2
作者 Shuyuan Yu Layue Li +1 位作者 Jiaji Luo Yuanyuan Yang 《Earthquake Research Advances》 CSCD 2024年第3期16-26,共11页
We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu(Tancheng-Lujiang) fault zone, according to the GPS horizontal ve... We employ the block negative dislocation model to invert the distribution of fault coupling and slip rate deficit on the different segments of the Tanlu(Tancheng-Lujiang) fault zone, according to the GPS horizontal velocity field from 1991 to 2007(the first phase) and 2013 to 2018(the second phase). By comparing the deformation characteristics results, we discuss the relationship between the deformation characteristics with the M earthquake in Japan. The results showed that the fault coupling rate of the northern section of Tancheng in the second phase reduced compared with that in the first phase. However, the results of the two phases showed that the northern section of Juxian still has a high coupling rate, a deep blocking depth, and a dextral compressive deficit, which is the enrapture section of the 1668 Tancheng earthquake. At the same time, the area strain results show that the strain rate of the central and eastern regions of the second phase is obviously enhanced compared with that of the first phase. The occurrence of the great earthquake in Japan has played a specific role in alleviating the strain accumulation in the middle and south sections of the Tanlu fault zone. The results of the maximum shear strain show that the shear strain in the middle section of the Tanlu fault zone in the second phase is weaker than that in the first phase, and the maximum shear strain in the southern section is stronger than that in the first phase. The fault coupling coefficient of the south Sihong to Jiashan section is high, and it is also the unruptured section of historical earthquakes. At the same time, small earthquakes in this area are not active and accumulate stress easily, so the future earthquake risk deserves attention. 展开更多
关键词 Tanlu fault Middle-southern segment GPS velocity field Inter-seismic slip Fault couping Steepest descent method
下载PDF
Crustal thickness beneath the Tanlu fault zone and its tectonic significance based on two-layer H-κstacking 被引量:6
3
作者 Lingli Li Weisen Shen +2 位作者 Siyuan Sui Huajian Yao Ziwen Bao 《Earthquake Science》 2021年第1期47-63,共17页
Tanlu fault zone(TLFZ)is the largest active fault zone in eastern China.It is characterized by complex tectonic evolution and multiple faults and marks the boundary between the North and South China blocks.An indepth ... Tanlu fault zone(TLFZ)is the largest active fault zone in eastern China.It is characterized by complex tectonic evolution and multiple faults and marks the boundary between the North and South China blocks.An indepth understanding of the distinct crustal structures of both parts of the TLFZ will provide valuable insights into the lithospheric and crustal thinning in eastern China,extensive magmatism since the Mesozoic,and formation mechanisms of metallogenic belts along the Yangtze River.In this study,a two-layer H-κstacking approach was adopted to estimate the thicknesses of the sediment and crystalline crust as well as the corresponding vP/vS ratios based on high-quality teleseismic P-wave receiver functions recorded by permanent and temporary stations in and around the TLFZ.The geological units in the study region were delineated,especially the crustal structures beneath extensive sedimentary basins on both sides of the TLFZ.The following conclusions can be drawn:(1)The crustal thickness in and around the TLFZ greatly varies depending on the segment.In the northern segment,the crust is relatively thin beneath the eastern part of the Songliao Basin,a broad uplift of the Moho can be observed,and the Moho descends from south to north.The crust below the central and southern segments becomes thinner from west to east.The thickness of the crust is less than 30 km toward the eastern side of the boundary between the Jiangsu and Anhui provinces,that is,significantly thinner than in other areas.In terms of the vP/vS ratios,high anomalies were detected in the central-southern segments of the TLFZ,indicating the upwelling of deep mantle magma via deep faults.(2)Positive isostatic gravity anomalies were observed in the eastern part of the northern segment of the TLFZ and in the eastern part of the Suwan segment.The crustal thickness is smaller than that obtained from the Airy model of isostasy.This suggests that the lower crust in this area may have experienced intensive transformation processes,which may be related to c 展开更多
关键词 sediment layer P-wave receiver function crustal thickness Tanlu fault zone two-layer H-κstacking
下载PDF
Application of SPAC method and electromagnetic wave CT in karst detection of Wuhan Metro Line 8
4
作者 Peng Xie Jinggang Li +3 位作者 Biao Wang Gang Wu Qiuliang Wang Song Lin 《Geodesy and Geodynamics》 EI CSCD 2023年第5期513-520,共8页
In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects ... In recent years,karst construction projects in the built-up area of Wuhan(capital of Hubei Province,China)are increasing,and the karst geological disasters have aroused social concerns.The actual engineering projects usually use shallow geophysical exploration methods to explore karst.This paper uses Spatial Auto-Correlation Method(SPAC)and electromagnetic Computerized Tomography(CT)to detect karst in urban built-up areas.Depending on the different physical properties of rock and soil,the SPAC method can better reveal the interface between soil and rock strata and the interface between soil layers.The electromagnetic CT method can identify strata according to the apparent absorption coefficient,which can better reveal the interface between soil and rock,the interface between the more intact and weathered rock.The SPAC method is mainly qualitative to measure the low-speed area,namely,the wrong geological body i.e.,karst cave,but also can detect the fracture zone or filling mode of karst cave,and at the same time,cannot use exploration holes or logging observation.The electromagnetic CT method can accurately detect the location and scale of the karst caves and has a higher accuracy detecting karst bands.In addition,exploration holes or well logging observations are also expected to be conducted,and their detection effect is greatly affected by lithology. 展开更多
关键词 SPAC Array type Electromagnetic wave CT method Karst detection
下载PDF
A real-time AI-assisted seismic monitoring system based on new nodal stations with 4G telemetry and its application in the Yangbi M_(S) 6.4 aftershock monitoring in southwest China 被引量:2
5
作者 Junlun Li Huajian Yao +10 位作者 Baoshan Wang Yang Yang Xin Hu Lishu Zhang Beng Ye Jun Yang Xiaobin Li Feng Liu Guoyi Chen Chang Guo Wen Yang 《Earthquake Research Advances》 CSCD 2022年第2期3-10,共8页
A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.Howeve... A rapidly deployable dense seismic monitoring system which is capable of transmitting acquired data in real time and analyzing data automatically is crucial in seismic hazard mitigation after a major earthquake.However,it is rather difficult for current seismic nodal stations to transmit data in real time for an extended period of time,and it usually takes a great amount of time to process the acquired data manually.To monitor earthquakes in real time flexibly,we develop a mobile integrated seismic monitoring system consisting of newly developed nodal units with 4G telemetry and a real-time AI-assisted automatic data processing workflow.The integrated system is convenient for deployment and has been successfully applied in monitoring the aftershocks of the Yangbi M_(S) 6.4 earthquake occurred on May 21,2021 in Yangbi County,Dali,Yunnan in southwest China.The acquired seismic data are transmitted almost in real time through the 4G cellular network,and then processed automat-ically for event detection,positioning,magnitude calculation and source mechanism inversion.From tens of seconds to a couple of minutes at most,the final seismic attributes can be presented remotely to the end users through the integrated system.From May 27 to June 17,the real-time system has detected and located 7905 aftershocks in the Yangbi area before the internal batteries exhausted,far more than the catalog provided by China Earthquake Networks Center using the regional permanent stations.The initial application of this inte-grated real-time monitoring system is promising,and we anticipate the advent of a new era for Real-time Intelligent Array Seismology(RIAS),for better monitoring and understanding the subsurface dynamic pro-cesses caused by Earth's internal forces as well as anthropogenic activities. 展开更多
关键词 Seismic dense array 4G data transmission Real-time earthquake monitoring Machine-learning assisted processing Real-time intelligent array seismology
下载PDF
Lateral variation in Moho depth around the southern Tanlu fault zone and its adjacent area 被引量:2
6
作者 Dequan Hong Xianliang Huang +3 位作者 Yun Yang Ziwen Bao Xiaoli Wang Xueying Wang 《Earthquake Science》 2021年第1期77-87,共11页
We estimated Moho depth beneath the southern Tanlu fault zone and its adjacent area using common-conversion-point(CCP)stacking of receiver functions,which were computed from teleseismic records of the CEArray.Our esti... We estimated Moho depth beneath the southern Tanlu fault zone and its adjacent area using common-conversion-point(CCP)stacking of receiver functions,which were computed from teleseismic records of the CEArray.Our estimated Moho depth matches well with 2-D profiles derived from active-source deep seismic reflection surveys,suggesting that the calculated the Moho depth map is likely accurate beyond the 2-D profiles.Overall,the estimated Moho depth map showed a high spatial correlation with tectonic provinces,i.e.,Moho topographic boundaries are in good agreement with geological boundaries.Beneath the Dabie orogenic belt and the mountainous areas in southern Anhui Province,the Moho lies relatively deep,and there is an obvious difference in Moho depth between the two sides of this segment of the Tanlu fault.We further selected four depth profiles with dense instrumentation to show Moho depth changes across different tectonic blocks in the study area.We saw two step-like changes in Moho depth beneath the Xiangfan-Guangji and Gushi-Feizhong,which run parallel along the WNW-ESE direction and delineate the southern and northern bounds of the northern Dabie orogenic belt,which is likely the suture zone between the North China Block and South China Block.Crust beneath the northeast corner of the study area is significantly thinner than other areas,which is consistent with the crustal detachment model proposed for suturing between the North and South China blocks in the region east to the Tanlu fault. 展开更多
关键词 CCP stacking Moho depth Tanlu fault zone FuncLab
下载PDF
Three-dimensional P-wave Velocity Structure Modelling of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt: Crustal Architecture and Metallogenic Implications 被引量:2
7
作者 CHEN Anguo LÜ Qingtian +4 位作者 ZHOU Taofa DU Jianguo DING Juan YAN Jiayong LU Zhitang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第6期1808-1821,共14页
In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Netwo... In this study,we compiled and analyzed 69310 P-wave travel-time data from 6639 earthquake events.These events(M≥2.0)occurred from 1980 s to June 2019 and were recorded at 319 seismic stations(Chinese Earthquake Networks Center)in the study area.We adopted the double-difference seismic tomographic method(tomo DD)to invert the 3-D P-wave velocity structure and constrain the crust-upper mantle architecture of the Middle and Lower Reaches of the Yangtze River Metallogenic Belt(MLYB).A 1-D initial model extracted from wide-angle seismic profiles was used in the seismic tomography,which greatly reduced the inversion residual.Our results indicate that reliable velocity structure of th e uppermost mantle can be obtained when Pn is involved in the tomography.Our results show that:(1)the pattern of the uppermost mantle velocity structure corresponds well with the geological partitioning:a nearly E-W-trending low-velocity zone is present beneath the Dabie Orogen,in contrast to the mainly NE-trending low-velocity anomalies beneath the Jiangnan Orogen.They suggest the presence of thickened lower crust beneath the orogens in the study area.In contrast,the Yangtze and Cathaysia blocks are characterized by relatively high-velocity anomalies;(2)both the ultra-high-pressure(UHP)metamorphic rocks in the Dabie Orogen and the low-pressure metamorphic rocks in the Zhangbaling dome are characterized by high-velocity anomalies.The upper crust in the Dabie Orogen is characterized by a low-velocity belt,sandwiched between two high velocity zones in a horizontal direction,with discontinuous low-velocity layers in the middle crust.The keel of the Dabie Orogen is mainly preserved beneath its northern section.We infer that the lower crustal delamination may have mainly occurred in the southern Dabie Orogen,which caused the mantle upwelling responsible for the formation of the granitic magmas emplaced in the middle crust as the low-velocity layers observed there.Continuous deep-level compression likely squeezed the granitic magma upward to i 展开更多
关键词 3D P-wave velocity structure double-difference seismic tomography crust-upper mantle Dabie Orogen Middle and Lower Reaches of the Yangtze River Metallogenic Belt
下载PDF
A multi-scale 3-D crust velocity model in the Hefei-Chao Lake area around the southern segment of Tanlu Fault Zone 被引量:1
8
作者 Lingli Li Huajian Yao +4 位作者 Song Luo Junhui Li Xiaoli Wang Hongyu Ni Ziwen Bao 《Earthquake Science》 2021年第4期344-357,共14页
Regional high-precision velocity models of the crust are an important foundation for examining seismic activity,seismogenic environments,and disaster distribution characteristics.The Hefei-Chao Lake area contains the ... Regional high-precision velocity models of the crust are an important foundation for examining seismic activity,seismogenic environments,and disaster distribution characteristics.The Hefei-Chao Lake area contains the main geological units of Hefei Basin,with thick sediments and the Chao Lake depression.Several major concealed faults of the southern NNE-trending Tanlu Fault Zone cross this area.To further explore the underground distribution characteristics of the faults and their tectonic evolutionary relationship with adjacent tectonic units,this study used ambient noise data recorded by a seismic array deployed in Hefei City and Chao Lake,constructing a 3-D velocity model at the depth of 1–8 km.Then a multi-scale high-resolution 3-D velocity model of this area was constructed by this new upper crustal velocity model with the previous middle and lower crustal model.The new model reveals that a high-velocity belt is highly consistent with the strike of the Tanlu Fault Zone,and a low-velocity sedimentary characteristic is consistent with the Hefei Basin and Chao Lake depression.The distribution morphology of high and low velocity bodies shows that the sedimentary pattern of Hefei-Chao Lake area is closely related to the tectonic evolution of the Tanlu Fault Zone since the Mesozoic.This study also identifies multiple low-velocity anomalies in the southeastern Hefei City.We speculate that strong ground motion during the 2009 Feidong earthquake(magnitude of 3.5)was related to amplification by the thick sediments in the Hefei Basin.We also discuss further applications of multi-scale high-resolution models of the shallow layer to strong ground motion simulations in cities and for earthquake disaster assessments. 展开更多
关键词 Tanlu Fault Zone Hefei-Chao Lake area CRUST multi-scale velocity model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部