The Standard Model of elementary particles, with its associated concept of a vacuum state of empty space, leads to strongly restricted results in subatomic physics. Examples are given by vanishing rest masses and an a...The Standard Model of elementary particles, with its associated concept of a vacuum state of empty space, leads to strongly restricted results in subatomic physics. Examples are given by vanishing rest masses and an associated spinless state of the photon. In a revised quantum electrodynamic theory by the author, new results have been deduced which cannot be obtained from the Standard Model. These are due to a vacuum state populated by Zero Point Energy and a corresponding nonzero electric charge density. This leads to a screw-shaped photon configuration with rest mass, spin and possibilities of needle radiation, to a deduced value of the elementary charge of the electron, muon and tauon being close to its experimental value, to a deduced mass being nearly equal to 125 GeV of the Higgs particle detected at CERN, and to the discovery of large intrinsic charges of both polarities within the volume of a particle. In their turn, these charges give rise to effects of the same magnitude as that of the strong force, and can account for the binding energy of 8 MeV of the neutron and proton. This makes a unification possible of electrodynamics with the strong nuclear force.展开更多
文摘The Standard Model of elementary particles, with its associated concept of a vacuum state of empty space, leads to strongly restricted results in subatomic physics. Examples are given by vanishing rest masses and an associated spinless state of the photon. In a revised quantum electrodynamic theory by the author, new results have been deduced which cannot be obtained from the Standard Model. These are due to a vacuum state populated by Zero Point Energy and a corresponding nonzero electric charge density. This leads to a screw-shaped photon configuration with rest mass, spin and possibilities of needle radiation, to a deduced value of the elementary charge of the electron, muon and tauon being close to its experimental value, to a deduced mass being nearly equal to 125 GeV of the Higgs particle detected at CERN, and to the discovery of large intrinsic charges of both polarities within the volume of a particle. In their turn, these charges give rise to effects of the same magnitude as that of the strong force, and can account for the binding energy of 8 MeV of the neutron and proton. This makes a unification possible of electrodynamics with the strong nuclear force.