The Maasai ostrich (Struthio camelus) is a the largest avian species in East Africa and though it’s not considered to be a species of conservation concern, some populations are on the decline and this is attributed t...The Maasai ostrich (Struthio camelus) is a the largest avian species in East Africa and though it’s not considered to be a species of conservation concern, some populations are on the decline and this is attributed to bush meat activities, predation on their eggs illegal consumption by humans, habitat destruction and forage competition with other large wildlife species. Climate change is also emerging to be another major threat due to interference with food availability which in turn interferes with the breeding rhythm. Thus, this study examined the population status, trend and distribution of the Maasai ostrich in the Southern Kenya and Northern Tanzania borderland after the 2007 to 2009 drought. The results showed that the species was found across the entire borderland but the Amboseli region had the highest number and density of Maasai ostrich (726.00 ± 100.9;0.08 ± 0.01 ostriches per km<sup>2</sup>), followed by Lake Natron area (330.8 ± 69.8;0.05 ± 0.01 ostriches per km<sup>2</sup>) and the least was in West Kilimanjaro (85.5 ± 18.0;0.03 ± 0.01 ostriches per km<sup>2</sup>). Drought caused a decline in the population of the Maasai ostrich but the Amboseli area experienced the highest decline in density (?13.44 ± 12.61) compared to other borderland sectors. However, the populations increased in most sectors after the drought, and wet season numbers and densities were higher than the dry season. The highest positive increase in number and density was in Lake Natron area (+85.65 ± 91.06) followed by West Kilimanjaro (+68.39 ± 59.54), and the least was in the Magadi area (+22.26 ± 32.05). There is a need to enhance conservation of avian species like the Maasai ostrich other than just focusing on the charismatic species such as the African elephant and black rhino. We therefore recommend joint collaboration in monitoring all large wildlife populations across the Kenya-Tanzania borderland with a view of understanding their status, trend and best management actions that can enhance their conservation.展开更多
We examined the population status, trend and distribution of Gerenuk, Fringe-eared Oryx and Lesser kudu in the Northern Tanzania and Southern Kenya borderland after the 2007 to 2009 drought. The species were character...We examined the population status, trend and distribution of Gerenuk, Fringe-eared Oryx and Lesser kudu in the Northern Tanzania and Southern Kenya borderland after the 2007 to 2009 drought. The species were characterized by low numbers and sparsely distributed in the borderland but were more prevalent and abundant in the Amboseli region. However, West Kilimanjaro had the highest positive change in density between 2010 and 2013 [Gerenuk = +1650.48 ± 1150.31, lesser kudu = +912.78 ± 487.63 and Fringe-eared Oryx = +366.65 ± 233.32]. Changes in density and composition varied seasonally among the different sectors of the borderland, with Gerenuk having the highest change in the Amboseli area during the wet season. Lesser kudu had the highest change in Amboseli and Kilimanjaro during the wet season while Fringe-eared Oryx had the highest change in the wet season in West Kilimanjaro area. Spatial distribution of the species varied seasonally and across different sectors of the borderland. In the dry season, Gerenuk exhibited a clumped distribution mainly in Amboseli National Park, and between Natron and West Kilimanjaro but in the wet season, it spread out more though higher concentrations were still found Amboseli and West Kilimanjaro. Lesser concentrated in mostly in West Kilimanjaro and Amboseli during the dry season but was widely dispersed during the wet season. Similarly, during the dry season, the Fringe-eared Oryx was confined in the Amboseli and West Kilimanjaro areas but during the wet season, it much more spread out with clusters in the Mbirikani area of the Amboseli region and a few places in Magadi, Natron and West Kilimanjaro. Management implications of the findings obtained in this study area here-in discussed.展开更多
Even though over many years the IUCN has considered the African buffalo and waterbuck and abundant species in Africa with no conservation concern, the situation is rapidly changing. Using aerial counts in wet and dry ...Even though over many years the IUCN has considered the African buffalo and waterbuck and abundant species in Africa with no conservation concern, the situation is rapidly changing. Using aerial counts in wet and dry season in 2010 and 2013, this study assessed the trend, population status and distribution of the African buffalo and common waterbuck in the Northern Tanzania and Southern Kenya borderland. Both species were rare in the borderland, with the Amboseli region had the highest number of buffalo (241.5 ± 29.9), followed by Magadi/Namanga (58.0 ± 22.0), West Kilimanjaro (38.8 ± 34.9), and lastly Lake Natron (14.5 ± 9.0) areas. In terms of density, Amboseli also led with 0.03 ± 0.00 (buffalo per km2), but rest had similar densities of 0.01 ± 0.00 buffalo per km2. In terms of percent changes in buffalo, Amboseli area had a positive increase (+10.59 ± 27.71), but with a negative growth of -17.12 in the dry season. All other changes in all locations had negative (decline) buffalo numbers over time. For waterbuck numbers, Amboseli area also led with 12.3 ± 3.9 waterbuck), followed by Magadi/Namanga (10.3 ± 3.7.0), Lake Natron (3.8 ± 3.4), and lastly West Kilimanjaro (0.5 ± 0.5) areas. In terms of waterbuck density, they were low and less than 0.00 ± 0.00 per km2. For percent changes in waterbuck numbers, Magadi/Namanga had higher positive change (+458.33 ± 291.67), but all other locations had negative (decline) changes with the worst being West Kilimanjaro and Lake Natron areas. Further, buffalo number was dependent (p = 0.008) on the season, with numbers being higher in the wet season than dry season. For waterbuck, numbers were independent (p = 0.72) of the season, with numbers being similar across seasons. The findings of this study showed that both species were negatively affected by drought. We recommend a constant joint monitoring program between Kenya and Tanzania, and jointly combat poaching, habitat fragmentation and encroachment to build viable populations in the borderland.展开更多
Among the nine sub-species of giraffes, the Maasai giraffe is the most widespread and common in Northern and Southern Kenya. Although it’s considered by the IUCN to be a species of no conservation concern, they have ...Among the nine sub-species of giraffes, the Maasai giraffe is the most widespread and common in Northern and Southern Kenya. Although it’s considered by the IUCN to be a species of no conservation concern, they have been reported to have declined in some of their range areas mostly due to bush meat activities, habitat fragmentation and loss. There are also concerns recent climatic changes especially prevalence of droughts is increasingly becoming another threat to their survival. In this regard, this study examined the status and trend of the Maasai giraffe in the Kenya-Tanzania border after the 2007 to 2009 drought. Amboseli had the highest giraffe number (averaging 2, 062.5 ± 534.7 giraffes), followed by a distant Lake Natron area (725.8 ± 129.4 giraffes), Magadi/Namanga (669.5 ± 198.0 giraffes), and lastly West Kilimanjaro area (236.5 ± 47.8 giraffes). Further, the proportion of giraffes were highest in Amboseli (55.09% ± 5.65%) followed by Lake Natron area (20.98% ± 3.42%), Magadi/Namanga area (16.35% ± 3.83%), and lastly West Kilimanjaro (7.58% ± 2.12%). But in terms of population growth after droughts, giraffe had positive growth in all locations in the borderland, with Magadi leading (+339.82 ± 329.99) followed Lake Natron area (+37.62 ± 83.27), Amboseli area (+38.11 ± 7.09), and lastly West Kilimanjaro (+3.21 ± 57.95.27). Their wet season population and density was much higher than that of the dry season. However, though the species was widely spread in the borderland, they seemed to avoid the region between Lake Magadi and Amboseli which is traversed by the Nairobi-Namanga highway both in wet and dry season. There is a need to develop a collaborative management framework for cross-border conservation to enhance their protection, conservation and genetic linkage.展开更多
Human-carnivore conflicts represent the most common negative form of interactions between humans and wildlife. Most carnivores involved in such conflicts are: lion, hyena, leopard and cheetah. Three strategies are nor...Human-carnivore conflicts represent the most common negative form of interactions between humans and wildlife. Most carnivores involved in such conflicts are: lion, hyena, leopard and cheetah. Three strategies are normally used in Kenya to mitigate such conflicts;consolation for lost livestock and human life to increase tolerance to them, use of predator proof homesteads especially among pastoralists, use flicking lights at night to discourage approach of carnivores near homesteads, and awareness creation among communities on the ecological role of carnivores. This study examined human-carnivore interactions in privately owned conservancies near Amboseli National Park, Kenya. The conservancies were found to have almost similar human and livestock demography. However, homesteads in Elerai had more fence broken parts and relatively higher levels of livestock predation by lion and hyena. The higher the number of each livestock type was, the higher the specific predation to that livestock type was, implying density dependent effects of predation by carnivores on livestock. It seemed that the fence structure and level of maintenance (including carnivore strategies on specializing on specific livestock size and age consistent with optimizing their foraging strategies) influenced predation incidences. However, the presence of adult males and Maasai warriors (morans) in bomas did not seem to be related with the number of livestock killed by carnivores, implying that they didn’t add vigilance as an additional strategy to prevent livestock depredation. It is recommended that attention be paid on maintenance of homestead and livestock fences as well as vigilance to deter predation. We further recommend strategies to prevent livestock predation such as, installation of chain link predator proof fences or carnivore lighting deterrents at night because woody plants fences are ineffective and deteriorate easily with time, and also lead to depletion of plant resources critical to households.展开更多
Climate change represents an unprecedented challenge for the conservation and management of endangered species and habitats. Effective climate smart conservation will require robust predictions of vulnerability and fu...Climate change represents an unprecedented challenge for the conservation and management of endangered species and habitats. Effective climate smart conservation will require robust predictions of vulnerability and future changes, along with the design and prioritisation of effective adaptation planning and management responses that are clearly linked to projected climate impacts. To achieve this goal, conservation managers urgently need practical tools and approaches for vulnerability assessment and adaptation planning. This article explores lessons emerging from a recent vulnerability assessment and adaptation planning exercise conducted on the impact of climate change for mountain gorilla (Gorilla beringei beringei). We describe the main findings emerging from this initiative and explore key lessons for climate change vulnerability assessment and adaptation planning for conservation management. Data limitations were a key factor determining the utility of model outputs and we stress the importance of stakeholder engagement and collaboration throughout the vulnerability assessment and adaptation planning cycle. These findings are of relevance to conservation practitioners seeking to incurporate climate change considerations into ongoing management planning for endangered species conservation.展开更多
The conservation of migratory wildlife species in the savannah habitat can be a challenge because of frequent and prolonged drought and their requirements for a large area. We investigated the performance of the wilde...The conservation of migratory wildlife species in the savannah habitat can be a challenge because of frequent and prolonged drought and their requirements for a large area. We investigated the performance of the wildebeest (Connochaetes taurinus) population in the 25,624 km2 Kilimanjaro landscape of Kenya and Tanzania, which comprises Amboseli-West Kilimanjaro-Magadi-Natron after 2009 drought. We used total aerial counts to determine the spatial distribution and numbers of wildebeests during wet and dry season in 2010 and 2013. Global Positioning System and digital voice recorders were used to count wildebeests along established transects within blocks. There was an increase in the wildebeest population by 103% during the wet season and 14% during the dry season between 2010 and 2013. The seasonal variation in density occurred between the four counting blocks with Natron and Magadi areas recording the highest densities. Generally, the increase in population could be attributed to the recovery of the population after the 2009 drought. The current cross border collaboration between Kenya and Tanzania in aerial surveys is an important step in the conservation of this migratory species in the landscape. This study demonstrates that detailed knowledge of density and spatial distribution of migratory species is required to plan effective conservation action.展开更多
The study characterized the status and trend of land cover transformation in Kirisia forest ecosystem between 1973 and 2015 using remote sensing and GIS. The dominant land cover types consisted of indigenous forest fo...The study characterized the status and trend of land cover transformation in Kirisia forest ecosystem between 1973 and 2015 using remote sensing and GIS. The dominant land cover types consisted of indigenous forest followed by shrub land and bush land. The findings showed a major increase in the built environment by 55.4% and an overall reduction in forest cover by 21.3%. Up to 83.9 km2 of the original indigenous forest was lost between 1973 and 1986 due to severe fires. Thereafter, 23.7 km2 of the remaining indigenous forest was lost between 1986 and 2000 mainly through charcoal burning, illegal timber logging and livestock forage harvesting. A slight recovery occurred between 2000 and 2015 with a 5% increase in indigenous forest cover mostly through natural succession by shrub land and bush land in the burnt forest areas especially following the 1998 El Nino period. The land cover change in the forest ecosystem was not exceptional in Kenya but mirrors similar changes that have been documented in other valued dry land watershed ecosystems in the country including the national water towers. The continued loss of forest cover is likely to affect the water recharge capacity in the watershed thereby creating severe water scarcity for the people in Mararal town as well as nearly 142,954 other individuals in the Kirisia region. Appropriate interventions are therefore needed to mitigate the negative land cover change in Kirisia forest and restore its hydrological functions and water recharge capacity.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Recent trends show that in the coming decades, Kenya’s natural resources will continue to face signifi...<div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Recent trends show that in the coming decades, Kenya’s natural resources will continue to face significant pressure due to both anthropogenic and natural stressors, and this will have greater negative impacts on socio-economic development including food security and livelihoods. Understanding the impacts of these stressors is an important step to developing coping and adaptation strategies at every level. The Water Towers of Kenya play a critical role in supplying ecosystems services such as water supply, timber and non-timber forest products and regulating services such as climate and water quantity and quality. To assess the vulnerability of the Water Towers to climate change, the study adopted the IPCC AR4 framework that defines vulnerability as a function of exposure, sensitivity, and adaptive capacity. The historical trends in rainfall indicate that the three Water Towers show a declining rainfall trend during the March-April-May (MAM) main rainy season, while the October-November-December (OND) short rainy season shows an increase. The temperature patterns are consistent with the domain having a common rising trend with a rate in the range of 0.3<span style="color:#4F4F4F;font-family:-apple-system, "font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span>C to 0.5<span style="color:#4F4F4F;font-family:-apple-system, "font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span>C per decade. Projection analysis considered three emissions scenarios: low-emission (mitigation) scenario (RCP2.6), a medium-level emission scenario (RCP4.5), and a high-emission (business as usual) scenario (RCP8.5). The results of the high-emission scenario show that the annual temperature over the Water Towers could rise by 3.0<span style="color:#4F4F4F;font-family:-apple-system, "font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span>C to 3.5<span style="color:#4F4F4F;font-family:-apple-system, "font-size展开更多
文摘The Maasai ostrich (Struthio camelus) is a the largest avian species in East Africa and though it’s not considered to be a species of conservation concern, some populations are on the decline and this is attributed to bush meat activities, predation on their eggs illegal consumption by humans, habitat destruction and forage competition with other large wildlife species. Climate change is also emerging to be another major threat due to interference with food availability which in turn interferes with the breeding rhythm. Thus, this study examined the population status, trend and distribution of the Maasai ostrich in the Southern Kenya and Northern Tanzania borderland after the 2007 to 2009 drought. The results showed that the species was found across the entire borderland but the Amboseli region had the highest number and density of Maasai ostrich (726.00 ± 100.9;0.08 ± 0.01 ostriches per km<sup>2</sup>), followed by Lake Natron area (330.8 ± 69.8;0.05 ± 0.01 ostriches per km<sup>2</sup>) and the least was in West Kilimanjaro (85.5 ± 18.0;0.03 ± 0.01 ostriches per km<sup>2</sup>). Drought caused a decline in the population of the Maasai ostrich but the Amboseli area experienced the highest decline in density (?13.44 ± 12.61) compared to other borderland sectors. However, the populations increased in most sectors after the drought, and wet season numbers and densities were higher than the dry season. The highest positive increase in number and density was in Lake Natron area (+85.65 ± 91.06) followed by West Kilimanjaro (+68.39 ± 59.54), and the least was in the Magadi area (+22.26 ± 32.05). There is a need to enhance conservation of avian species like the Maasai ostrich other than just focusing on the charismatic species such as the African elephant and black rhino. We therefore recommend joint collaboration in monitoring all large wildlife populations across the Kenya-Tanzania borderland with a view of understanding their status, trend and best management actions that can enhance their conservation.
文摘We examined the population status, trend and distribution of Gerenuk, Fringe-eared Oryx and Lesser kudu in the Northern Tanzania and Southern Kenya borderland after the 2007 to 2009 drought. The species were characterized by low numbers and sparsely distributed in the borderland but were more prevalent and abundant in the Amboseli region. However, West Kilimanjaro had the highest positive change in density between 2010 and 2013 [Gerenuk = +1650.48 ± 1150.31, lesser kudu = +912.78 ± 487.63 and Fringe-eared Oryx = +366.65 ± 233.32]. Changes in density and composition varied seasonally among the different sectors of the borderland, with Gerenuk having the highest change in the Amboseli area during the wet season. Lesser kudu had the highest change in Amboseli and Kilimanjaro during the wet season while Fringe-eared Oryx had the highest change in the wet season in West Kilimanjaro area. Spatial distribution of the species varied seasonally and across different sectors of the borderland. In the dry season, Gerenuk exhibited a clumped distribution mainly in Amboseli National Park, and between Natron and West Kilimanjaro but in the wet season, it spread out more though higher concentrations were still found Amboseli and West Kilimanjaro. Lesser concentrated in mostly in West Kilimanjaro and Amboseli during the dry season but was widely dispersed during the wet season. Similarly, during the dry season, the Fringe-eared Oryx was confined in the Amboseli and West Kilimanjaro areas but during the wet season, it much more spread out with clusters in the Mbirikani area of the Amboseli region and a few places in Magadi, Natron and West Kilimanjaro. Management implications of the findings obtained in this study area here-in discussed.
文摘Even though over many years the IUCN has considered the African buffalo and waterbuck and abundant species in Africa with no conservation concern, the situation is rapidly changing. Using aerial counts in wet and dry season in 2010 and 2013, this study assessed the trend, population status and distribution of the African buffalo and common waterbuck in the Northern Tanzania and Southern Kenya borderland. Both species were rare in the borderland, with the Amboseli region had the highest number of buffalo (241.5 ± 29.9), followed by Magadi/Namanga (58.0 ± 22.0), West Kilimanjaro (38.8 ± 34.9), and lastly Lake Natron (14.5 ± 9.0) areas. In terms of density, Amboseli also led with 0.03 ± 0.00 (buffalo per km2), but rest had similar densities of 0.01 ± 0.00 buffalo per km2. In terms of percent changes in buffalo, Amboseli area had a positive increase (+10.59 ± 27.71), but with a negative growth of -17.12 in the dry season. All other changes in all locations had negative (decline) buffalo numbers over time. For waterbuck numbers, Amboseli area also led with 12.3 ± 3.9 waterbuck), followed by Magadi/Namanga (10.3 ± 3.7.0), Lake Natron (3.8 ± 3.4), and lastly West Kilimanjaro (0.5 ± 0.5) areas. In terms of waterbuck density, they were low and less than 0.00 ± 0.00 per km2. For percent changes in waterbuck numbers, Magadi/Namanga had higher positive change (+458.33 ± 291.67), but all other locations had negative (decline) changes with the worst being West Kilimanjaro and Lake Natron areas. Further, buffalo number was dependent (p = 0.008) on the season, with numbers being higher in the wet season than dry season. For waterbuck, numbers were independent (p = 0.72) of the season, with numbers being similar across seasons. The findings of this study showed that both species were negatively affected by drought. We recommend a constant joint monitoring program between Kenya and Tanzania, and jointly combat poaching, habitat fragmentation and encroachment to build viable populations in the borderland.
文摘Among the nine sub-species of giraffes, the Maasai giraffe is the most widespread and common in Northern and Southern Kenya. Although it’s considered by the IUCN to be a species of no conservation concern, they have been reported to have declined in some of their range areas mostly due to bush meat activities, habitat fragmentation and loss. There are also concerns recent climatic changes especially prevalence of droughts is increasingly becoming another threat to their survival. In this regard, this study examined the status and trend of the Maasai giraffe in the Kenya-Tanzania border after the 2007 to 2009 drought. Amboseli had the highest giraffe number (averaging 2, 062.5 ± 534.7 giraffes), followed by a distant Lake Natron area (725.8 ± 129.4 giraffes), Magadi/Namanga (669.5 ± 198.0 giraffes), and lastly West Kilimanjaro area (236.5 ± 47.8 giraffes). Further, the proportion of giraffes were highest in Amboseli (55.09% ± 5.65%) followed by Lake Natron area (20.98% ± 3.42%), Magadi/Namanga area (16.35% ± 3.83%), and lastly West Kilimanjaro (7.58% ± 2.12%). But in terms of population growth after droughts, giraffe had positive growth in all locations in the borderland, with Magadi leading (+339.82 ± 329.99) followed Lake Natron area (+37.62 ± 83.27), Amboseli area (+38.11 ± 7.09), and lastly West Kilimanjaro (+3.21 ± 57.95.27). Their wet season population and density was much higher than that of the dry season. However, though the species was widely spread in the borderland, they seemed to avoid the region between Lake Magadi and Amboseli which is traversed by the Nairobi-Namanga highway both in wet and dry season. There is a need to develop a collaborative management framework for cross-border conservation to enhance their protection, conservation and genetic linkage.
文摘Human-carnivore conflicts represent the most common negative form of interactions between humans and wildlife. Most carnivores involved in such conflicts are: lion, hyena, leopard and cheetah. Three strategies are normally used in Kenya to mitigate such conflicts;consolation for lost livestock and human life to increase tolerance to them, use of predator proof homesteads especially among pastoralists, use flicking lights at night to discourage approach of carnivores near homesteads, and awareness creation among communities on the ecological role of carnivores. This study examined human-carnivore interactions in privately owned conservancies near Amboseli National Park, Kenya. The conservancies were found to have almost similar human and livestock demography. However, homesteads in Elerai had more fence broken parts and relatively higher levels of livestock predation by lion and hyena. The higher the number of each livestock type was, the higher the specific predation to that livestock type was, implying density dependent effects of predation by carnivores on livestock. It seemed that the fence structure and level of maintenance (including carnivore strategies on specializing on specific livestock size and age consistent with optimizing their foraging strategies) influenced predation incidences. However, the presence of adult males and Maasai warriors (morans) in bomas did not seem to be related with the number of livestock killed by carnivores, implying that they didn’t add vigilance as an additional strategy to prevent livestock depredation. It is recommended that attention be paid on maintenance of homestead and livestock fences as well as vigilance to deter predation. We further recommend strategies to prevent livestock predation such as, installation of chain link predator proof fences or carnivore lighting deterrents at night because woody plants fences are ineffective and deteriorate easily with time, and also lead to depletion of plant resources critical to households.
文摘Climate change represents an unprecedented challenge for the conservation and management of endangered species and habitats. Effective climate smart conservation will require robust predictions of vulnerability and future changes, along with the design and prioritisation of effective adaptation planning and management responses that are clearly linked to projected climate impacts. To achieve this goal, conservation managers urgently need practical tools and approaches for vulnerability assessment and adaptation planning. This article explores lessons emerging from a recent vulnerability assessment and adaptation planning exercise conducted on the impact of climate change for mountain gorilla (Gorilla beringei beringei). We describe the main findings emerging from this initiative and explore key lessons for climate change vulnerability assessment and adaptation planning for conservation management. Data limitations were a key factor determining the utility of model outputs and we stress the importance of stakeholder engagement and collaboration throughout the vulnerability assessment and adaptation planning cycle. These findings are of relevance to conservation practitioners seeking to incurporate climate change considerations into ongoing management planning for endangered species conservation.
文摘The conservation of migratory wildlife species in the savannah habitat can be a challenge because of frequent and prolonged drought and their requirements for a large area. We investigated the performance of the wildebeest (Connochaetes taurinus) population in the 25,624 km2 Kilimanjaro landscape of Kenya and Tanzania, which comprises Amboseli-West Kilimanjaro-Magadi-Natron after 2009 drought. We used total aerial counts to determine the spatial distribution and numbers of wildebeests during wet and dry season in 2010 and 2013. Global Positioning System and digital voice recorders were used to count wildebeests along established transects within blocks. There was an increase in the wildebeest population by 103% during the wet season and 14% during the dry season between 2010 and 2013. The seasonal variation in density occurred between the four counting blocks with Natron and Magadi areas recording the highest densities. Generally, the increase in population could be attributed to the recovery of the population after the 2009 drought. The current cross border collaboration between Kenya and Tanzania in aerial surveys is an important step in the conservation of this migratory species in the landscape. This study demonstrates that detailed knowledge of density and spatial distribution of migratory species is required to plan effective conservation action.
文摘The study characterized the status and trend of land cover transformation in Kirisia forest ecosystem between 1973 and 2015 using remote sensing and GIS. The dominant land cover types consisted of indigenous forest followed by shrub land and bush land. The findings showed a major increase in the built environment by 55.4% and an overall reduction in forest cover by 21.3%. Up to 83.9 km2 of the original indigenous forest was lost between 1973 and 1986 due to severe fires. Thereafter, 23.7 km2 of the remaining indigenous forest was lost between 1986 and 2000 mainly through charcoal burning, illegal timber logging and livestock forage harvesting. A slight recovery occurred between 2000 and 2015 with a 5% increase in indigenous forest cover mostly through natural succession by shrub land and bush land in the burnt forest areas especially following the 1998 El Nino period. The land cover change in the forest ecosystem was not exceptional in Kenya but mirrors similar changes that have been documented in other valued dry land watershed ecosystems in the country including the national water towers. The continued loss of forest cover is likely to affect the water recharge capacity in the watershed thereby creating severe water scarcity for the people in Mararal town as well as nearly 142,954 other individuals in the Kirisia region. Appropriate interventions are therefore needed to mitigate the negative land cover change in Kirisia forest and restore its hydrological functions and water recharge capacity.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;"></span>Recent trends show that in the coming decades, Kenya’s natural resources will continue to face significant pressure due to both anthropogenic and natural stressors, and this will have greater negative impacts on socio-economic development including food security and livelihoods. Understanding the impacts of these stressors is an important step to developing coping and adaptation strategies at every level. The Water Towers of Kenya play a critical role in supplying ecosystems services such as water supply, timber and non-timber forest products and regulating services such as climate and water quantity and quality. To assess the vulnerability of the Water Towers to climate change, the study adopted the IPCC AR4 framework that defines vulnerability as a function of exposure, sensitivity, and adaptive capacity. The historical trends in rainfall indicate that the three Water Towers show a declining rainfall trend during the March-April-May (MAM) main rainy season, while the October-November-December (OND) short rainy season shows an increase. The temperature patterns are consistent with the domain having a common rising trend with a rate in the range of 0.3<span style="color:#4F4F4F;font-family:-apple-system, "font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span>C to 0.5<span style="color:#4F4F4F;font-family:-apple-system, "font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span>C per decade. Projection analysis considered three emissions scenarios: low-emission (mitigation) scenario (RCP2.6), a medium-level emission scenario (RCP4.5), and a high-emission (business as usual) scenario (RCP8.5). The results of the high-emission scenario show that the annual temperature over the Water Towers could rise by 3.0<span style="color:#4F4F4F;font-family:-apple-system, "font-size:14px;white-space:normal;background-color:#FFFFFF;">°</span>C to 3.5<span style="color:#4F4F4F;font-family:-apple-system, "font-size