Warm and ice-rich frozen soil(WIRFS) exhibits lower shear strength due to the weak binding forces between soil particles and ice crystals. To enhance the strength of WIRFS, frozen soil was treated separately with Port...Warm and ice-rich frozen soil(WIRFS) exhibits lower shear strength due to the weak binding forces between soil particles and ice crystals. To enhance the strength of WIRFS, frozen soil was treated separately with Portland, Phosphate, Sulphoaluminate, Portland-Phosphate and PortlandSulphoaluminate cements. After the samples were cured under -1.0°C for 7 days, the microscopic pore distribution characteristics and the macro-mechanical properties of WIRFS were investigated using mercury intrusion porosimetry(MIP), scanning electron microscopy(SEM) and unconfined compressive strength(UCS) tests. To quantitatively analyze the laws of pore-size transformation and the variation of Hausdorff volumetric fractal dimensions for pre-and post-treated WIRFS, the CURVEEXTRACT and Image-Pro Plus(IPP) image analysis system has been developed for analysing SEM images of the soil samples. Statistics of the pore-area dimension and pore-volume dimension were calculated. The results reveal that the cement-based treatment of WIRFS can improve the cementation fill of soil pores and the bond forces between soil particles. There is an evident correlation between the microstructure characteristics and the mechanical properties of the treated WIRFS. As the fractal dimensions of pore-area decrease, the unconfined compressive strength of cement-treated WIRFS increases significantly. In contrast, as the fractal dimensions of pore-volume increases, the unconfined compressive strength decreases remarkably.展开更多
Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ec...Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ecological risks by natural attenuation (NA). Because of cost-effective and sustainable cleanup, monitored natural attenuation (MNA) and enhanced natural attenuation (ENA) have been gaining more attention recently, especially in the respects of ecological risk-oriented contaminated land management and a follow-up measure after active remediation. The uses and procedures of MNA for contaminated site cleanup and remediation in USA and EU were introduced firstly, and then possible applications of MNA in China were suggested. More developments and practices of MNA and ENA for managing contaminated sites in China are expected.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 41471062 and 41401087)the State Key Laboratory of Frozen Soil Engineering (Grant No.SKLFSE-ZT-35)
文摘Warm and ice-rich frozen soil(WIRFS) exhibits lower shear strength due to the weak binding forces between soil particles and ice crystals. To enhance the strength of WIRFS, frozen soil was treated separately with Portland, Phosphate, Sulphoaluminate, Portland-Phosphate and PortlandSulphoaluminate cements. After the samples were cured under -1.0°C for 7 days, the microscopic pore distribution characteristics and the macro-mechanical properties of WIRFS were investigated using mercury intrusion porosimetry(MIP), scanning electron microscopy(SEM) and unconfined compressive strength(UCS) tests. To quantitatively analyze the laws of pore-size transformation and the variation of Hausdorff volumetric fractal dimensions for pre-and post-treated WIRFS, the CURVEEXTRACT and Image-Pro Plus(IPP) image analysis system has been developed for analysing SEM images of the soil samples. Statistics of the pore-area dimension and pore-volume dimension were calculated. The results reveal that the cement-based treatment of WIRFS can improve the cementation fill of soil pores and the bond forces between soil particles. There is an evident correlation between the microstructure characteristics and the mechanical properties of the treated WIRFS. As the fractal dimensions of pore-area decrease, the unconfined compressive strength of cement-treated WIRFS increases significantly. In contrast, as the fractal dimensions of pore-volume increases, the unconfined compressive strength decreases remarkably.
文摘Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ecological risks by natural attenuation (NA). Because of cost-effective and sustainable cleanup, monitored natural attenuation (MNA) and enhanced natural attenuation (ENA) have been gaining more attention recently, especially in the respects of ecological risk-oriented contaminated land management and a follow-up measure after active remediation. The uses and procedures of MNA for contaminated site cleanup and remediation in USA and EU were introduced firstly, and then possible applications of MNA in China were suggested. More developments and practices of MNA and ENA for managing contaminated sites in China are expected.