As the world strives to reduce the impact of population growth, urbanization, agricultural expansion, and climate change on food security, energy and water shortage, resource over-exploration, biodiversity loss, envir...As the world strives to reduce the impact of population growth, urbanization, agricultural expansion, and climate change on food security, energy and water shortage, resource over-exploration, biodiversity loss, environmental pollution, and ultimately human health, timely and higher resolution land cover information is urgently needed to achieve the sustainable development goals of the United Nations.展开更多
Abscisic acid(ABA)is an important phytohormone regulating plant growth,development,and stress responses.It has an essential role in multiple physiological processes of plants,such as stomatal closure,cuticular wax acc...Abscisic acid(ABA)is an important phytohormone regulating plant growth,development,and stress responses.It has an essential role in multiple physiological processes of plants,such as stomatal closure,cuticular wax accumulation,leaf senescence,bud dormancy,seed germination,osmotic regulation,and growth inhibition among many others.Abscisic acid controls downstream responses to abiotic and biotic environmental changes through both transcriptional and posttranscriptional mechanisms.During the past 20 years,ABA biosynthesis and many of its signaling pathways have been well characterized.Here we review the dynamics of ABA metabolic pools and signaling that affects many of its physiological functions.展开更多
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated Cas9) has been widely used in genome editing in a variety of organisms, including rice (Cong et al., 2013; Feng et al., 2013).
The theory of the concept lattice is an efficient tool for knowledge representation and knowledge discovery, and is applied to many fields successfully. One focus of knowledge discovery is knowledge reduction. This pa...The theory of the concept lattice is an efficient tool for knowledge representation and knowledge discovery, and is applied to many fields successfully. One focus of knowledge discovery is knowledge reduction. This paper proposes the theory of attribute reduction in the concept lattice, which extends the theory of the concept lattice. In this paper, the judgment theorems of consistent sets are examined, and the discernibility matrix of a formal context is introduced, by which we present an approach to attribute reduction in the concept lattice. The characteristics of three types of attributes are analyzed.展开更多
The limited availability of phosphate (Pi) in most soils results in the manifestation of Pi starvation responses in plants. To dissect the transcriptional regulation of Pi stress-response mechanisms, we have charact...The limited availability of phosphate (Pi) in most soils results in the manifestation of Pi starvation responses in plants. To dissect the transcriptional regulation of Pi stress-response mechanisms, we have characterized the biological role of MYB62, an R2R3-type MYB transcription factor that is induced in response to Pi deficiency. The induction of MYB62 is a specific response in the leaves during Pi deprivation. The MYB62 protein localizes to the nucleus. The overexpression of MYB62 resulted in altered root architecture, Pi uptake, and acid phosphatase activity, leading to decreased total Pi content in the shoots. The expression of several Pi starvation-induced (PSI) genes was also suppressed in the MYB62 overexpressing plants. Overexpression of MYB62 resulted in a characteristic gibberellic acid (GA)-deficient phenotype that could be partially reversed by exogenous application of GA. In addition, the expression of SOC1 and SUPERMAN, molecular reg- ulators of flowering, was suppressed in the MYB62 overexpressing plants. Interestingly, the expression of these genes was also reduced during Pi deprivation in wild-type plants, suggesting a role for GA biosynthetic and floral regulatory genes in Pi starvation responses. Thus, this study highlights the role of MYB62 in the regulation of phosphate starvation responses via changes in GA metabolism and signaling. Such cross-talk between Pi homeostasis and GA might have broader implications on flowering, root development and adaptive mechanisms during nutrient stress.展开更多
Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low effi...Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low efficiency of homologous recombination and poor availability of exogenous donor DNA as repair templates strongly impede the use of HDR for precise genome editing in many species (Komor et al., 2017a). To complement the HDR method and circumvent some of its limitations.展开更多
Dear Editor, The class 2/type Ⅱ clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been used successfully for simultaneous modification of multiple loci in plants. Two general strateg...Dear Editor, The class 2/type Ⅱ clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been used successfully for simultaneous modification of multiple loci in plants. Two general strategies have been applied to coexpress multiple single guide RNAs (sgRNAs) to achieve multiplex gene editing in plant cells.展开更多
Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a com...Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.展开更多
The variations of mass concentrations of PM2.5, PMl0, SO2, NO2, CO, and 03 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31,201...The variations of mass concentrations of PM2.5, PMl0, SO2, NO2, CO, and 03 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31,2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.s with NO2: r = 0.256-0.688, mean r = 0,498:PM10 with NO2: r = 0.169-0.713, mean r=0.493; PM2.5 with SO2: r=0.232-0.693, mean r=0.449; PM10 with SO2: r=0.131-0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156-0.721, mean r = 0.437; PMl0: r= 0.06-0.67, mean r= 0.380). The correlation between PMs and 03 was either weak or uncorrelated (PM2.s: r= -0,35 to 0.089, mean r= -0.164; PM10: r= -0.279 to 0.078, mean r= -0.127), except in Haikou (PM2.5: r=0.500; PM10: r=0,509).展开更多
In rice, amylose content (AC) is controlled by a single dominant Waxy gene. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Casg) to introduce a loss-of-function m...In rice, amylose content (AC) is controlled by a single dominant Waxy gene. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Casg) to introduce a loss-of-function mutation into the Waxy gene in two widely cultivated elite japonica varieties. Our results show that mutations in the Waxy gene reduce AC and convert the rice into glutinous ones without affecting other desirable agronomic traits, offering an effective and easy strategy to improve glutinosity in elite varieties. Importantly, we successfully removed the transgenes from the progeny. Our study provides an example of generating improved crops with potential for commercialization, by editing a gene of interest directly in elite crop varieties.展开更多
Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on lo...Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on local hydrology,climate,biodiversity,and food production[1,2].However,maps,that contain knowledge on the distribution,pattern and composition of various land use types in urban areas,are limited to city level.The mapping standard on data sources,methods,land use classification schemes varies from city to city,due to differences in financial input and skills of mapping personnel.To address various national and global environmental challenges caused by urbanization,it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods.This is because,only with urban land use maps produced with similar criteria,consistent environmental policies can be made,and action efforts can be compared and assessed for large scale environmental administration.However,despite of the fact that a number of urban-extent maps exist at global scales[3,4],more detailed urban land use maps do not exist at the same scale.Even at big country or regional levels such as for the United States,China and European Union,consistent land use mapping efforts are rare[5,6](e.g.,https://sdi4apps.eu/open_land_use/).展开更多
Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was...Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was named as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)by International Committee on Taxonomy of Viruses on 11 February,2020.This study aimed to develop a mathematical model for calculating the transmissibility of the virus.Methods:In this study,we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source(probably be bats)to the human infection.Since the Bats-HostsReservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market(reservoir)to people,we simplified the model as Reservoir-People(RP)transmission network model.The next generation matrix approach was adopted to calculate the basic reproduction number(R0)from the RP model to assess the transmissibility of the SARS-CoV-2.Results:The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58.Conclusions:Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries,similar to severe acute respiratory syndrome,but lower than MERS in the Republic of Korea.展开更多
Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance.Studying the response of soil microbial co...Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance.Studying the response of soil microbial communities to biochar amendments is important for better understanding interactions of biochar with soil,as well as plants.However,the effect of biochar on soil microorganisms has received less attention than its influences on soil physicochemical properties.In this review,the following key questions are discussed:(i)how does biochar affect soil microbial activities,in particular soil carbon(C)mineralization,nutrient cycling,and enzyme activities?(ii)how do microorganisms respond to biochar amendment in contaminated soils?and(iii)what is the role of biochar as a growth promoter for soil microorganisms?Many studies have demonstrated that biochar-soil application enhances the soil microbial biomass with substantial changes in microbial community composition.Biochar amendment changes microbial habitats,directly or indirectly affects microbial metabolic activities,and modifies the soil microbial community in terms of their diversity and abundance.However,chemical properties of biochar,(especially pH and nutrient content),and physical properties such as pore size,pore volume,and specific surface area play significant roles in determining the efficacy of biochar on microbial performance as biochar provides suitable habitats for microorgan-isms.The mode of action of biochar leading to stimulation of microbial activities is complex and is influenced by the nature of biochar as well as soil conditions.展开更多
Soil salinity is a major environmental stress that restricts the growth and yield of crops.Understanding the physiological,metabolic,and biochemical responses of plants to salt stress and mining the salt tolerance-ass...Soil salinity is a major environmental stress that restricts the growth and yield of crops.Understanding the physiological,metabolic,and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops.In this review,we provide a comprehensive summary of the mechanisms of salt stress responses in plants,including salt stress-triggered physiological responses,oxidative stress,salt stress sensing and signaling pathways,organellar stress,ion homeostasis,hormonal and gene expression regulation,metabolic changes,as well as salt tolerance mechanisms in halophytes.Important questions regarding salt tolerance that need to be addressed in the future are discussed.展开更多
Dear Editor, Rice (Oryza sativa) is the staple food for more than half of the world's population. Technologies enabling precise and efficient DNA knock-in or replacement, hereinafter referred to as KI, have the pot...Dear Editor, Rice (Oryza sativa) is the staple food for more than half of the world's population. Technologies enabling precise and efficient DNA knock-in or replacement, hereinafter referred to as KI, have the potential to revolutionize the generation of crops by precision molecular breeding.展开更多
The Asteraceae (Compositae),a large plant family of approximately 24 000-35 000 species,accounts for^10% of all angiosperm species and contributes a lot to plant diversity.The most representative members of the Astera...The Asteraceae (Compositae),a large plant family of approximately 24 000-35 000 species,accounts for^10% of all angiosperm species and contributes a lot to plant diversity.The most representative members of the Asteraceae are the economically important chrysanthemums (Chrysanthemum L.)that diversified through reticulate evolution.Biodiversity is typically created by multiple evolutionary mechanisms such as wholegenome duplication 0NGD)or polyploidization and locally repetitive genome expansion.However,the lack of genomic data from chrysanthemum species has prevented an in-depth analysis of the evolutionary mechanisms involved in their diversification.Here,we used Oxford Nanopore long-read technologyto sequence the diploid Chrysanthemum nankingense genome,which represents one of the progenitor genomes of domesticated chrysanthemums.Our analysis revealed that the evolution of the C.nankingense genome was driven by bursts of repetitive element expansion and WGD events including a recentWGD that distinguishes chrysanthemum from sunflower,which diverged from chrysanthemum approximately 38.8 million years ago.Variations of ornamental and medicinal traits in chrysanthemums are linked to the expansion of candidate gene families by duplication events including paralogous gene duplication.Collectively,our study of the assembled reference genome offers new knowledge and resources to dissect the history and pattern of evolution and diversification of chrysanthemum plants,and also to accelerate their breeding and improvement.展开更多
Genome editing is revolutionizing plant research and crop breeding.Sequence-specific nucleases(SSNs)such as zinc finger nuclease(ZFN)and TAL effector nuclease(TALEN)have been used to create site-specific DNA double-st...Genome editing is revolutionizing plant research and crop breeding.Sequence-specific nucleases(SSNs)such as zinc finger nuclease(ZFN)and TAL effector nuclease(TALEN)have been used to create site-specific DNA double-strand breaks and to achieve precise DNA modifications by promoting homology-directed repair(HDR)(Steinert et al.,2016;Voytas,2013).Later,RNA-guided SSNs such as CRISPR-Cas9,Cas12a,Cas12b,and their variants were applied for genome editing in plants(Li et al.,2013;Nekrasov et alM 2013;Tang et al.,2017;Zhong et al.,2019;Ming et al.,2020;Tang et al.,2019).However,HDR relies on simultaneous delivery of SSNs and DNA donors,which has been challenging in plants(Steinert et al.,2016;Zhang et aL,2019).Another challenge for realizing efficient HDR in plants is that DNA repair favors nonhomologous end joining(NHEJ)pathways over HDR in most cell types(Puchta,2005;Qi et al.,2013).展开更多
CRISPR/Cas9 genome editing relies on sgRNA-target DNA base pairing and a short downstream PAM sequence to recognize target DNA. The strict protospacer adjacent motif (PAM) requirement hinders applications of the CRISP...CRISPR/Cas9 genome editing relies on sgRNA-target DNA base pairing and a short downstream PAM sequence to recognize target DNA. The strict protospacer adjacent motif (PAM) requirement hinders applications of the CRISPR/Cas9 system since it restricts the targetable sites in the genomes. xCas9 and SpCas9-NG are two recently engineered SpCas9 variants that can recognize more relaxed NG PAMs, implying a great potential in addressing the issue of PAM constraint. Here we use stable transgenic lines to evaluate the efficacies of xCas9 and SpCas9-NG in performing gene editing and base editing in rice. We found that xCas9 can efficiently induce mutations at target sites with NG and GAT PAM sequences in rice. However, base editors containing xCas9 failed to edit most of the tested target sites. SpCas9-NG exhibited a robust editing activity at sites with various NG PAMs without showing any preference for the third nucleotide after NG. Moreover, we showed that xCas9 and SpCas9-NG have higher specificity than SpCas9 at the CGG PAM site. We further demonstrated that different forms of cytosine or adenine base editors containing SpCas9-NG worked efficiently in rice with broadened PAM compatibility. Taken together, our work has yielded versatile genome-engineering tools that will significantly expand the target scope in rice and other crops.展开更多
基金partially supported by the National Key Research and Development Program of China(2016YFA0600103)Delos Living LLCthe Cyrus Tang Foundation
文摘As the world strives to reduce the impact of population growth, urbanization, agricultural expansion, and climate change on food security, energy and water shortage, resource over-exploration, biodiversity loss, environmental pollution, and ultimately human health, timely and higher resolution land cover information is urgently needed to achieve the sustainable development goals of the United Nations.
基金supported by the Shanghai Center for Plant Stress Biology from the Chinese Academy of Sciences, the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB27040107)the National Natural Science Foundation of China (31970293)the Shanghai Pujiang Program (18PJ1410900)
文摘Abscisic acid(ABA)is an important phytohormone regulating plant growth,development,and stress responses.It has an essential role in multiple physiological processes of plants,such as stomatal closure,cuticular wax accumulation,leaf senescence,bud dormancy,seed germination,osmotic regulation,and growth inhibition among many others.Abscisic acid controls downstream responses to abiotic and biotic environmental changes through both transcriptional and posttranscriptional mechanisms.During the past 20 years,ABA biosynthesis and many of its signaling pathways have been well characterized.Here we review the dynamics of ABA metabolic pools and signaling that affects many of its physiological functions.
文摘CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated Cas9) has been widely used in genome editing in a variety of organisms, including rice (Cong et al., 2013; Feng et al., 2013).
基金This work was supported by the National 973 Program of China(Grant No.2002CB3 1 2200)the National Natural Science Foundation of China(Grant No.60373038) the Natural Scientific Research Project ofthe Education Department ofShaanxi Province in China(Grant No.04JK131).
文摘The theory of the concept lattice is an efficient tool for knowledge representation and knowledge discovery, and is applied to many fields successfully. One focus of knowledge discovery is knowledge reduction. This paper proposes the theory of attribute reduction in the concept lattice, which extends the theory of the concept lattice. In this paper, the judgment theorems of consistent sets are examined, and the discernibility matrix of a formal context is introduced, by which we present an approach to attribute reduction in the concept lattice. The characteristics of three types of attributes are analyzed.
文摘The limited availability of phosphate (Pi) in most soils results in the manifestation of Pi starvation responses in plants. To dissect the transcriptional regulation of Pi stress-response mechanisms, we have characterized the biological role of MYB62, an R2R3-type MYB transcription factor that is induced in response to Pi deficiency. The induction of MYB62 is a specific response in the leaves during Pi deprivation. The MYB62 protein localizes to the nucleus. The overexpression of MYB62 resulted in altered root architecture, Pi uptake, and acid phosphatase activity, leading to decreased total Pi content in the shoots. The expression of several Pi starvation-induced (PSI) genes was also suppressed in the MYB62 overexpressing plants. Overexpression of MYB62 resulted in a characteristic gibberellic acid (GA)-deficient phenotype that could be partially reversed by exogenous application of GA. In addition, the expression of SOC1 and SUPERMAN, molecular reg- ulators of flowering, was suppressed in the MYB62 overexpressing plants. Interestingly, the expression of these genes was also reduced during Pi deprivation in wild-type plants, suggesting a role for GA biosynthetic and floral regulatory genes in Pi starvation responses. Thus, this study highlights the role of MYB62 in the regulation of phosphate starvation responses via changes in GA metabolism and signaling. Such cross-talk between Pi homeostasis and GA might have broader implications on flowering, root development and adaptive mechanisms during nutrient stress.
文摘Dear Editor Precise modification of eukaryotic genomes has been accom- plished mainly through homology-directed repair (HDR) of DNA double-strand breaks (DSBs) (Hess et al., 2017). However, the inherent low efficiency of homologous recombination and poor availability of exogenous donor DNA as repair templates strongly impede the use of HDR for precise genome editing in many species (Komor et al., 2017a). To complement the HDR method and circumvent some of its limitations.
文摘Dear Editor, The class 2/type Ⅱ clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has been used successfully for simultaneous modification of multiple loci in plants. Two general strategies have been applied to coexpress multiple single guide RNAs (sgRNAs) to achieve multiplex gene editing in plant cells.
基金supported by the National Key Scientific Research Project(2011CB915400)supported by the National Natural Science Foundation of China(31730007)
文摘Stomata, the pores formed by a pair of guard cells, are the main gateways for water transpiration and photosynthetic CO2 exchange, as well as pathogen invasion in land plants. Guard cell movement is regulated by a combination of environmental factors, including water status, light, CO2 levels and pathogen attack, as well as endogenous signals, such as abscisic acid and apoplastic reactive oxygen species (ROS). Under abiotic and biotic stress conditions, extracellular ROS are mainly produced by plasma membrane-localized NADPH oxidases, whereas intracellular ROS are produced in multiple organelles. These ROS form a sophisticated cellular signaling network, with the accumulation of apoplastic ROS an early hallmark of stomatal movement. Here, we review recent progress in understanding the molecular mechanisms of the ROS signaling network, primarily during drought stress and pathogen attack. We summarize the roles of apoplastic ROS in regulating stomatal movement, ABA and CO2 signaling, and immunity responses. Finally, we discuss ROS accumulation and communication between organelles and cells. This information provides a conceptual framework for understanding how ROS signaling is integrated with various signaling pathways during plant responses to abiotic and biotic stress stimuli.
基金funded by the Tsinghua National Laboratory for Information Science and Technology(TNList) Cross-discipline Foundationthe special fund of the Key Laboratory of Eco Planning & Green Building,Ministry of Education(Tsinghua University), China
文摘The variations of mass concentrations of PM2.5, PMl0, SO2, NO2, CO, and 03 in 31 Chinese provincial capital cities were analyzed based on data from 286 monitoring sites obtained between March 22, 2013 and March 31,2014. By comparing the pollutant concentrations over this length of time, the characteristics of the monthly variations of mass concentrations of air pollutants were determined. We used the Pearson correlation coefficient to establish the relationship between PM2.5, PM10, and the gas pollutants. The results revealed significant differences in the concentration levels of air pollutants and in the variations between the different cities. The Pearson correlation coefficients between PMs and NO2 and SO2 were either high or moderate (PM2.s with NO2: r = 0.256-0.688, mean r = 0,498:PM10 with NO2: r = 0.169-0.713, mean r=0.493; PM2.5 with SO2: r=0.232-0.693, mean r=0.449; PM10 with SO2: r=0.131-0.669, mean r = 0.403). The correlation between PMs and CO was diverse (PM2.5: r = 0.156-0.721, mean r = 0.437; PMl0: r= 0.06-0.67, mean r= 0.380). The correlation between PMs and 03 was either weak or uncorrelated (PM2.s: r= -0,35 to 0.089, mean r= -0.164; PM10: r= -0.279 to 0.078, mean r= -0.127), except in Haikou (PM2.5: r=0.500; PM10: r=0,509).
基金supported by the Chinese Academy of SciencesUS NIH Grants R01GM070795 and R01GM059138(to J.K.Z.)the support of the International Postdoctoral Exchange Fellowship Program of China under grant 20140029
文摘In rice, amylose content (AC) is controlled by a single dominant Waxy gene. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Casg) to introduce a loss-of-function mutation into the Waxy gene in two widely cultivated elite japonica varieties. Our results show that mutations in the Waxy gene reduce AC and convert the rice into glutinous ones without affecting other desirable agronomic traits, offering an effective and easy strategy to improve glutinosity in elite varieties. Importantly, we successfully removed the transgenes from the progeny. Our study provides an example of generating improved crops with potential for commercialization, by editing a gene of interest directly in elite crop varieties.
基金partially supported by the National Key Research and Development Program of China(2016YFA0600104)supported by donations made by Delos Living LLC,and the Cyrus Tang Foundation+2 种基金supported by the National Natural Science Foundation of China(41471419)Beijing Institute of Urban Planningsupported by the Fundamental Research Funds for the Central Universities(CCNU19TD002).
文摘Land use reflects human activities on land.Urban land use is the highest level human alteration on Earth,and it is rapidly changing due to population increase and urbanization.Urban areas have widespread effects on local hydrology,climate,biodiversity,and food production[1,2].However,maps,that contain knowledge on the distribution,pattern and composition of various land use types in urban areas,are limited to city level.The mapping standard on data sources,methods,land use classification schemes varies from city to city,due to differences in financial input and skills of mapping personnel.To address various national and global environmental challenges caused by urbanization,it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods.This is because,only with urban land use maps produced with similar criteria,consistent environmental policies can be made,and action efforts can be compared and assessed for large scale environmental administration.However,despite of the fact that a number of urban-extent maps exist at global scales[3,4],more detailed urban land use maps do not exist at the same scale.Even at big country or regional levels such as for the United States,China and European Union,consistent land use mapping efforts are rare[5,6](e.g.,https://sdi4apps.eu/open_land_use/).
基金This study was supported by Xiamen New Coronavirus Prevention and Control Emergency Tackling Special Topic Program(No:3502Z2020YJ03).
文摘Background:As reported by the World Health Organization,a novel coronavirus(2019-nCoV)was identified as the causative virus of Wuhan pneumonia of unknown etiology by Chinese authorities on 7 January,2020.The virus was named as severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)by International Committee on Taxonomy of Viruses on 11 February,2020.This study aimed to develop a mathematical model for calculating the transmissibility of the virus.Methods:In this study,we developed a Bats-Hosts-Reservoir-People transmission network model for simulating the potential transmission from the infection source(probably be bats)to the human infection.Since the Bats-HostsReservoir network was hard to explore clearly and public concerns were focusing on the transmission from Huanan Seafood Wholesale Market(reservoir)to people,we simplified the model as Reservoir-People(RP)transmission network model.The next generation matrix approach was adopted to calculate the basic reproduction number(R0)from the RP model to assess the transmissibility of the SARS-CoV-2.Results:The value of R0 was estimated of 2.30 from reservoir to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58.Conclusions:Our model showed that the transmissibility of SARS-CoV-2 was higher than the Middle East respiratory syndrome in the Middle East countries,similar to severe acute respiratory syndrome,but lower than MERS in the Republic of Korea.
文摘Application of biochar to soils changes soil physicochemical properties and stimulates the activities of soil microorganisms that influence soil quality and plant performance.Studying the response of soil microbial communities to biochar amendments is important for better understanding interactions of biochar with soil,as well as plants.However,the effect of biochar on soil microorganisms has received less attention than its influences on soil physicochemical properties.In this review,the following key questions are discussed:(i)how does biochar affect soil microbial activities,in particular soil carbon(C)mineralization,nutrient cycling,and enzyme activities?(ii)how do microorganisms respond to biochar amendment in contaminated soils?and(iii)what is the role of biochar as a growth promoter for soil microorganisms?Many studies have demonstrated that biochar-soil application enhances the soil microbial biomass with substantial changes in microbial community composition.Biochar amendment changes microbial habitats,directly or indirectly affects microbial metabolic activities,and modifies the soil microbial community in terms of their diversity and abundance.However,chemical properties of biochar,(especially pH and nutrient content),and physical properties such as pore size,pore volume,and specific surface area play significant roles in determining the efficacy of biochar on microbial performance as biochar provides suitable habitats for microorgan-isms.The mode of action of biochar leading to stimulation of microbial activities is complex and is influenced by the nature of biochar as well as soil conditions.
基金We are grateful to Zichen Xu for assistance in the preparation of the figures.This work was supported by the Strategic Priority Research Program(grant no.XDB27040101)of the Chinese Academy of Sciences.
文摘Soil salinity is a major environmental stress that restricts the growth and yield of crops.Understanding the physiological,metabolic,and biochemical responses of plants to salt stress and mining the salt tolerance-associated genetic resource in nature will be extremely important for us to cultivate salt-tolerant crops.In this review,we provide a comprehensive summary of the mechanisms of salt stress responses in plants,including salt stress-triggered physiological responses,oxidative stress,salt stress sensing and signaling pathways,organellar stress,ion homeostasis,hormonal and gene expression regulation,metabolic changes,as well as salt tolerance mechanisms in halophytes.Important questions regarding salt tolerance that need to be addressed in the future are discussed.
文摘Dear Editor, Rice (Oryza sativa) is the staple food for more than half of the world's population. Technologies enabling precise and efficient DNA knock-in or replacement, hereinafter referred to as KI, have the potential to revolutionize the generation of crops by precision molecular breeding.
基金The National Key Research and Development Program of China (2016YFD0801102)and the National Natural Science Foundation of China (31870198 and 31400278).
文摘The Asteraceae (Compositae),a large plant family of approximately 24 000-35 000 species,accounts for^10% of all angiosperm species and contributes a lot to plant diversity.The most representative members of the Asteraceae are the economically important chrysanthemums (Chrysanthemum L.)that diversified through reticulate evolution.Biodiversity is typically created by multiple evolutionary mechanisms such as wholegenome duplication 0NGD)or polyploidization and locally repetitive genome expansion.However,the lack of genomic data from chrysanthemum species has prevented an in-depth analysis of the evolutionary mechanisms involved in their diversification.Here,we used Oxford Nanopore long-read technologyto sequence the diploid Chrysanthemum nankingense genome,which represents one of the progenitor genomes of domesticated chrysanthemums.Our analysis revealed that the evolution of the C.nankingense genome was driven by bursts of repetitive element expansion and WGD events including a recentWGD that distinguishes chrysanthemum from sunflower,which diverged from chrysanthemum approximately 38.8 million years ago.Variations of ornamental and medicinal traits in chrysanthemums are linked to the expansion of candidate gene families by duplication events including paralogous gene duplication.Collectively,our study of the assembled reference genome offers new knowledge and resources to dissect the history and pattern of evolution and diversification of chrysanthemum plants,and also to accelerate their breeding and improvement.
文摘Genome editing is revolutionizing plant research and crop breeding.Sequence-specific nucleases(SSNs)such as zinc finger nuclease(ZFN)and TAL effector nuclease(TALEN)have been used to create site-specific DNA double-strand breaks and to achieve precise DNA modifications by promoting homology-directed repair(HDR)(Steinert et al.,2016;Voytas,2013).Later,RNA-guided SSNs such as CRISPR-Cas9,Cas12a,Cas12b,and their variants were applied for genome editing in plants(Li et al.,2013;Nekrasov et alM 2013;Tang et al.,2017;Zhong et al.,2019;Ming et al.,2020;Tang et al.,2019).However,HDR relies on simultaneous delivery of SSNs and DNA donors,which has been challenging in plants(Steinert et al.,2016;Zhang et aL,2019).Another challenge for realizing efficient HDR in plants is that DNA repair favors nonhomologous end joining(NHEJ)pathways over HDR in most cell types(Puchta,2005;Qi et al.,2013).
文摘CRISPR/Cas9 genome editing relies on sgRNA-target DNA base pairing and a short downstream PAM sequence to recognize target DNA. The strict protospacer adjacent motif (PAM) requirement hinders applications of the CRISPR/Cas9 system since it restricts the targetable sites in the genomes. xCas9 and SpCas9-NG are two recently engineered SpCas9 variants that can recognize more relaxed NG PAMs, implying a great potential in addressing the issue of PAM constraint. Here we use stable transgenic lines to evaluate the efficacies of xCas9 and SpCas9-NG in performing gene editing and base editing in rice. We found that xCas9 can efficiently induce mutations at target sites with NG and GAT PAM sequences in rice. However, base editors containing xCas9 failed to edit most of the tested target sites. SpCas9-NG exhibited a robust editing activity at sites with various NG PAMs without showing any preference for the third nucleotide after NG. Moreover, we showed that xCas9 and SpCas9-NG have higher specificity than SpCas9 at the CGG PAM site. We further demonstrated that different forms of cytosine or adenine base editors containing SpCas9-NG worked efficiently in rice with broadened PAM compatibility. Taken together, our work has yielded versatile genome-engineering tools that will significantly expand the target scope in rice and other crops.