水体透明度(Secchi Disk depth,SDD)是水环境监测的重要参数,遥感技术对于监测水体透明度具有重要的应用前景。本文旨在分类和比较当前用于监测水体透明度的算法,并提出未来研究的方向,以推动水环境监测技术的进一步发展。文章对目前检...水体透明度(Secchi Disk depth,SDD)是水环境监测的重要参数,遥感技术对于监测水体透明度具有重要的应用前景。本文旨在分类和比较当前用于监测水体透明度的算法,并提出未来研究的方向,以推动水环境监测技术的进一步发展。文章对目前检索水体透明度的算法进行分类和比较。其中,经验算法、半分析算法和机器学习算法是目前研究的主要方向。通过分析算法特性和优缺点,提出未来研究的重点和方向。经验算法基于透明度与光谱数据、叶绿素a浓度等的相关性,半分析算法基于水下能见度理论,机器学习算法则基于更优的数据特征学习能力。不同算法具有各自的适用范围和限制。未来的研究应该着重于整合多源遥感数据,改进QAA(quasi-analytical-algorithm),深入分析光学参数与水体透明度的关系,将机器学习算法应用到水体透明度模型的建立中,以建立具有高精度、适用性广的反演模型。展开更多
文摘水体透明度(Secchi Disk depth,SDD)是水环境监测的重要参数,遥感技术对于监测水体透明度具有重要的应用前景。本文旨在分类和比较当前用于监测水体透明度的算法,并提出未来研究的方向,以推动水环境监测技术的进一步发展。文章对目前检索水体透明度的算法进行分类和比较。其中,经验算法、半分析算法和机器学习算法是目前研究的主要方向。通过分析算法特性和优缺点,提出未来研究的重点和方向。经验算法基于透明度与光谱数据、叶绿素a浓度等的相关性,半分析算法基于水下能见度理论,机器学习算法则基于更优的数据特征学习能力。不同算法具有各自的适用范围和限制。未来的研究应该着重于整合多源遥感数据,改进QAA(quasi-analytical-algorithm),深入分析光学参数与水体透明度的关系,将机器学习算法应用到水体透明度模型的建立中,以建立具有高精度、适用性广的反演模型。