通过异质核诱导,利用溶剂热法在较低温度下合成了具有疏水表面的上转换发光稀土核-壳Na YF4/Na Lu F4∶20%Yb,1%Tm纳米粒子,并利用X射线衍射仪、透射电子显微镜、傅里叶变换红外吸收光谱仪以及荧光光谱仪等测试设备对其进行了结构、形...通过异质核诱导,利用溶剂热法在较低温度下合成了具有疏水表面的上转换发光稀土核-壳Na YF4/Na Lu F4∶20%Yb,1%Tm纳米粒子,并利用X射线衍射仪、透射电子显微镜、傅里叶变换红外吸收光谱仪以及荧光光谱仪等测试设备对其进行了结构、形貌和上转换光谱的表征。测试结果表明,纳米粒子核为立方相,壳层为六角相。核-壳型纳米粒子的尺寸平均在20 nm以下,分布较为均匀。在980 nm近红外光激发下,核-壳型纳米粒子发射出较强的紫色和紫外荧光,且发光强度明显高于同尺寸立方相Na Lu F4∶20%Yb,1%Tm纳米粒子。这表明利用异质核诱导的方法制备的核-壳型纳米粒子在生物医学领域具有更高的应用价值。展开更多
Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌...Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌的样品。用原子力显微镜对各样品的Ag纳米粒子形貌和尺寸进行了表征,并且测试了吸收谱、室温和变温PL谱及时间分辨光致发光(TRPL)谱。结果表明:随着Ag沉积时间的延长,所得Ag纳米粒子粒径增大,粒子纵横比先增大后减小且吸收谱峰红移。由于不同形貌的Ag纳米粒子在入射光作用下产生的局域表面等离激元(LSPs)与MQWs中激子耦合强度不同,光发射能力也不同,与没有Ag纳米粒子的样品相比,沉积时间为15 s的样品室温PL积分强度被抑制6.74倍,沉积时间为25 s和35 s的样品室温PL积分强度分别增强1.55和1.72倍且峰位发生红移,沉积时间为45 s的样品室温PL积分强度基本没有变化。TRPL与变温PL的测试结果证明,室温PL积分强度的改变是由于LSPs与MQWs中的激子耦合作用引起的。纵横比大且吸收谱与MQWs的PL谱交叠大的Ag纳米粒子能够更好地增强InGaN/Ga N MQWs的发光。展开更多
文摘通过异质核诱导,利用溶剂热法在较低温度下合成了具有疏水表面的上转换发光稀土核-壳Na YF4/Na Lu F4∶20%Yb,1%Tm纳米粒子,并利用X射线衍射仪、透射电子显微镜、傅里叶变换红外吸收光谱仪以及荧光光谱仪等测试设备对其进行了结构、形貌和上转换光谱的表征。测试结果表明,纳米粒子核为立方相,壳层为六角相。核-壳型纳米粒子的尺寸平均在20 nm以下,分布较为均匀。在980 nm近红外光激发下,核-壳型纳米粒子发射出较强的紫色和紫外荧光,且发光强度明显高于同尺寸立方相Na Lu F4∶20%Yb,1%Tm纳米粒子。这表明利用异质核诱导的方法制备的核-壳型纳米粒子在生物医学领域具有更高的应用价值。
文摘Ag纳米粒子的形貌对InGaN/Ga N多量子阱(MQWs)的光致发光(PL)效率有着显著影响。本文采用离子束沉积(IBD)技术将Ag沉积在InGaN/Ga N MQWs上,然后通过快速热退火处理制备Ag纳米粒子。通过改变Ag的沉积时间获得了具有不同Ag纳米粒子形貌的样品。用原子力显微镜对各样品的Ag纳米粒子形貌和尺寸进行了表征,并且测试了吸收谱、室温和变温PL谱及时间分辨光致发光(TRPL)谱。结果表明:随着Ag沉积时间的延长,所得Ag纳米粒子粒径增大,粒子纵横比先增大后减小且吸收谱峰红移。由于不同形貌的Ag纳米粒子在入射光作用下产生的局域表面等离激元(LSPs)与MQWs中激子耦合强度不同,光发射能力也不同,与没有Ag纳米粒子的样品相比,沉积时间为15 s的样品室温PL积分强度被抑制6.74倍,沉积时间为25 s和35 s的样品室温PL积分强度分别增强1.55和1.72倍且峰位发生红移,沉积时间为45 s的样品室温PL积分强度基本没有变化。TRPL与变温PL的测试结果证明,室温PL积分强度的改变是由于LSPs与MQWs中的激子耦合作用引起的。纵横比大且吸收谱与MQWs的PL谱交叠大的Ag纳米粒子能够更好地增强InGaN/Ga N MQWs的发光。