期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
可验证的基于词典的可搜索加密方案 被引量:9
1
作者 王尚平 刘利军 张亚玲 《软件学报》 EI CSCD 北大核心 2016年第5期1301-1308,共8页
针对云存储中数据检索和安全问题,提出了一个可验证的基于词典的可搜索加密方案.该方案能够验证搜索结果的完备性.在适应性不可区分安全模型下证明了该方案的安全性.与现有方案相比,该方案具有陷门大小固定、适应性安全、更新无需重新... 针对云存储中数据检索和安全问题,提出了一个可验证的基于词典的可搜索加密方案.该方案能够验证搜索结果的完备性.在适应性不可区分安全模型下证明了该方案的安全性.与现有方案相比,该方案具有陷门大小固定、适应性安全、更新无需重新计算、可验证等优势. 展开更多
关键词 可搜索加密 词典 完备性 索引矩阵 校验和
下载PDF
基于双重注意力机制的人群计数方法
2
作者 赵志强 马培红 黑新宏 《计算机应用》 CSCD 北大核心 2024年第9期2886-2892,共7页
针对复杂场景下人群计数问题中的尺度变化、背景干扰和部分遮挡等问题,在空洞卷积操作的基础上,提出一种基于双重注意力机制的空洞上下文卷积神经网络(DA-DCCNN)。首先,将VGG16中的卷积层作为特征提取器,获取人群图像抽象、深层的特征图... 针对复杂场景下人群计数问题中的尺度变化、背景干扰和部分遮挡等问题,在空洞卷积操作的基础上,提出一种基于双重注意力机制的空洞上下文卷积神经网络(DA-DCCNN)。首先,将VGG16中的卷积层作为特征提取器,获取人群图像抽象、深层的特征图;其次,利用空洞卷积构造空洞上下文模块(DCM)对不同层获取的特征进行连接,并引入空间注意力模块(SAM)和通道注意力模块(CAM)获取上下文信息;最后,组合欧氏距离和交叉熵构造损失函数,对网络预测注意力图和真实注意力图之间的差异进行度量。在ShanghaiTech、UCF_CC_50和UCF-QNRF 3个公开数据集上的实验结果表明,DA-DCCNN在有效获取图像的多尺度特征的同时,增强了对图像中重要区域和通道的感知能力,平均绝对误差(MAE)取得了相对最优的结果。基于双重注意力机制的特征融合网络能有效感知图像中的空间结构和局部特征,从而使得生成的密度图能更准确地对人群区域进行预测和计数。 展开更多
关键词 空洞卷积 上下文特征 双重注意力机制 密度图 人群计数
下载PDF
基于教与学优化的可变卷积自编码器的医学图像分类方法 被引量:4
3
作者 李薇 樊瑶驰 +2 位作者 江巧永 王磊 徐庆征 《计算机应用》 CSCD 北大核心 2022年第2期592-598,共7页
针对传统手工方法优化卷积神经网络(CNN)参数时存在耗时长、不准确,以及参数设置影响算法性能等问题,提出一种基于教与学优化(TLBO)的可变卷积自编码器(CAE)算法。该算法设计了可变长度的个体编码策略,从而快速构建CAE结构,并堆叠CAE为... 针对传统手工方法优化卷积神经网络(CNN)参数时存在耗时长、不准确,以及参数设置影响算法性能等问题,提出一种基于教与学优化(TLBO)的可变卷积自编码器(CAE)算法。该算法设计了可变长度的个体编码策略,从而快速构建CAE结构,并堆叠CAE为一个CNN;此外,充分利用优秀个体的结构信息来引导算法朝着更有希望的区域搜索,从而提高算法性能。实验结果表明,所提算法在解决医学图像分类问题时,分类精度达到89.84%,高于传统CNN和同类型神经网络。该算法通过优化CAE结构和堆叠CNN解决医学图像分类问题,有效提高了医学图像分类性能。 展开更多
关键词 卷积自编码器 卷积神经网络 教与学优化 演化算法 医学图像
下载PDF
基于NSGA-Ⅱ的自适应多尺度特征通道分组优化算法
4
作者 王彬 向甜 +1 位作者 吕艺东 王晓帆 《计算机应用》 CSCD 北大核心 2023年第5期1401-1408,共8页
针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最... 针对轻量型卷积神经网络(LCNN)的精确度和复杂度均衡优化问题,提出基于快速非支配排序遗传算法(NSGA-Ⅱ)的自适应多尺度特征通道分组优化算法对LCNN特征通道分组结构进行优化。首先,将LCNN中的特征融合层结构的复杂度最小化和精确度最大化作为两个优化目标,进行双目标函数建模及理论分析;然后,设计基于NSGA-Ⅱ的LCNN结构优化框架,并在原始LCNN结构的深度卷积层之上增加基于NSGA-Ⅱ的自适应分组层,构建基于NSGA-Ⅱ的自适应多尺度的特征融合网络NSGA2-AMFFNetwork。在图像分类数据集上的实验结果显示,与手工设计的网络结构M_blockNet_v1相比,NSGA2-AMFFNetwork的平均精确度提升了1.2202个百分点,运行时间降低了41.07%。这表明所提优化算法能较好平衡LCNN的复杂度和精确度,同时还可为领域知识不足的普通用户提供更多性能表现均衡的网络结构选择方案。 展开更多
关键词 轻量型卷积神经网络 特征提取通道分组优化 双目标函数建模 快速非支配排序遗传算法 图像分类 进化算法
下载PDF
基于有向无环图的倒排链等字长划分压缩算法 被引量:1
5
作者 姜琨 刘征 +1 位作者 朱磊 李晓星 《计算机应用》 CSCD 北大核心 2021年第3期727-732,共6页
在搜索引擎的倒排索引等字长(FWA)类型压缩算法中,倒排链的"贪心"分块划分策略和码字信息的交错存储使算法难以达到最优的压缩效果。针对上述问题,提出了一种基于有向无环图(DAG)的FWA划分压缩算法。首先,考虑到互联网网页聚... 在搜索引擎的倒排索引等字长(FWA)类型压缩算法中,倒排链的"贪心"分块划分策略和码字信息的交错存储使算法难以达到最优的压缩效果。针对上述问题,提出了一种基于有向无环图(DAG)的FWA划分压缩算法。首先,考虑到互联网网页聚类特性带来的倒排链小数字信息,设计了一种数据区为64位分块的新型FWA压缩格式。该压缩格式通过4位的指示区将数据区划分为16种适合于连续小数字压缩的存储模式,并将倒排链每个分块的指示位和数据位分类存储,从而保证了较好的批量解压性能。其次,在新压缩格式的基础上提出一种基于DAG描述的倒排链FWA划分压缩方法——固定字对齐划分(WAP)算法。该算法利用DAG将倒排链分块划分问题归结为单源最短路径(SSSP)问题,并考虑FWA压缩格式中数据区存储模式的限制条件来确定SSSP问题的结构形式和递归定义。然后,给出了采用动态规划求解SSSP问题并形成最优划分向量的伪码和算法复杂度,并对S9、S16、S8b等传统FWA算法的原有存储模式进行了基于DAG的划分优化,把优化前后的算法的计算复杂度进行比较分析。最后,使用仿真整数序列数据和文本检索会议(TREC)GOV2网页索引数据进行压缩性能实验。实验结果表明,相较于传统FWA类型算法,基于DAG的FWA划分算法在通过批量解压和划分优化技术提升算法的压缩率和解压速度同时,对连续小数字整数序列进行压缩时能够获得比传统参照框架(FOR)类型算法更高的压缩率。 展开更多
关键词 倒排索引 等字长压缩算法 有向无环图 最优划分 动态规划
下载PDF
基于中文预训练的安全事件实体识别研究 被引量:1
6
作者 朱磊 董林靖 +4 位作者 黑新宏 王一川 彭伟 刘雁孝 盘隆 《信息安全研究》 2021年第7期652-660,共9页
为提高公共安全事件中中文命名实体识别的效率,对《中文突发事件语料库》进行研究,通过对预训练任务的优化和训练集的迁移学习,提出基于领域预训练的公共安全事件实体识别方法.首先,对预训练模型RoBERTa进行优化,更新安全领域词典,实现... 为提高公共安全事件中中文命名实体识别的效率,对《中文突发事件语料库》进行研究,通过对预训练任务的优化和训练集的迁移学习,提出基于领域预训练的公共安全事件实体识别方法.首先,对预训练模型RoBERTa进行优化,更新安全领域词典,实现数据增强,并将中文单字符的掩码机制替换为全词掩码机制,获取公共安全事件中领域实体特征和语义信息.接着,使用10万条在线新闻语料进行领域预训练,生成了公共安全领域预训练模型RoBERTa+,增强下游任务命名实体识别的能力.最后,采用双向长短时记忆网络BiLSTM获取语料文本的上下文信息特征,经过条件随机场CRF进行序列解码标注,完成公共安全领域的中文命名实体识别任务.实验结果表明,改进的模型在中文突发事件语料库中准确率平均可达到87%以上,召回率和F1值都达到了80%以上,从而证明了领域预训练可以有效提升公共安全事件中实体信息的识别能力. 展开更多
关键词 公共安全事件 中文实体识别 领域预训练 双向长短时记忆网络 条件随机场 RoBERTa预训练语言模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部