非正交多址和认知无线电技术能有效提高频谱效率,是新一代移动通信系统的关键技术。针对功率域非正交多址认知无线电网络的能效优化问题,建立了满足次用户最小系统吞吐量和主用户最大干扰的次用户功率分配模型,将子信道吞吐量公式进行分...非正交多址和认知无线电技术能有效提高频谱效率,是新一代移动通信系统的关键技术。针对功率域非正交多址认知无线电网络的能效优化问题,建立了满足次用户最小系统吞吐量和主用户最大干扰的次用户功率分配模型,将子信道吞吐量公式进行分解,得到子信道功率分配系数和子信道功率消耗率2个子问题。针对第1个问题,采取凸差(difference of convex,DC)规划算法将目标函数等效为2个凸函数差形式,并应用一阶泰勒展开式进行连续近似,将非凸问题转换为凸优化问题,从而得到子信道复用次用户最优功率分配系数;针对第2个问题,采用Dinkelbach算法和次梯度算法,利用拉格朗日函数,得到最优子信道功率消耗率。仿真结果表明,所提功率分配算法收敛速度快,时间复杂度低,其平均系统能效性能远优于分数功率分配算法。展开更多
文摘非正交多址和认知无线电技术能有效提高频谱效率,是新一代移动通信系统的关键技术。针对功率域非正交多址认知无线电网络的能效优化问题,建立了满足次用户最小系统吞吐量和主用户最大干扰的次用户功率分配模型,将子信道吞吐量公式进行分解,得到子信道功率分配系数和子信道功率消耗率2个子问题。针对第1个问题,采取凸差(difference of convex,DC)规划算法将目标函数等效为2个凸函数差形式,并应用一阶泰勒展开式进行连续近似,将非凸问题转换为凸优化问题,从而得到子信道复用次用户最优功率分配系数;针对第2个问题,采用Dinkelbach算法和次梯度算法,利用拉格朗日函数,得到最优子信道功率消耗率。仿真结果表明,所提功率分配算法收敛速度快,时间复杂度低,其平均系统能效性能远优于分数功率分配算法。