在实际气层中,束缚水以毛管束缚水和水膜形式存在。根据由Derjaguin-Landau-Verwey-Overbee理论建立的总分离压和水膜厚度的理论计算模型,结合扩展Young-Laplace公式,采用迭代算法,提出了计算储层水膜厚度的图解法。利用实际地层实测温...在实际气层中,束缚水以毛管束缚水和水膜形式存在。根据由Derjaguin-Landau-Verwey-Overbee理论建立的总分离压和水膜厚度的理论计算模型,结合扩展Young-Laplace公式,采用迭代算法,提出了计算储层水膜厚度的图解法。利用实际地层实测温度、压力数据,得到总分离压与水膜厚度曲线,求得在气藏中部孔隙中的水膜厚度远小于含气孔隙半径。在实际气藏的高矿化度水溶液中,静电斥力较小,只有Van der Waals引力是保持水膜稳定的主要作用力,因此气藏孔隙中水膜厚度小。对比临界孔隙半径和水膜厚度的计算值表明,束缚水主要以毛管束缚水的形式存在,水膜厚度远小于含气孔隙的半径,对天然气渗流的影响小。展开更多
文摘在实际气层中,束缚水以毛管束缚水和水膜形式存在。根据由Derjaguin-Landau-Verwey-Overbee理论建立的总分离压和水膜厚度的理论计算模型,结合扩展Young-Laplace公式,采用迭代算法,提出了计算储层水膜厚度的图解法。利用实际地层实测温度、压力数据,得到总分离压与水膜厚度曲线,求得在气藏中部孔隙中的水膜厚度远小于含气孔隙半径。在实际气藏的高矿化度水溶液中,静电斥力较小,只有Van der Waals引力是保持水膜稳定的主要作用力,因此气藏孔隙中水膜厚度小。对比临界孔隙半径和水膜厚度的计算值表明,束缚水主要以毛管束缚水的形式存在,水膜厚度远小于含气孔隙的半径,对天然气渗流的影响小。