变转速工况下的滚动轴承故障振动信号具有多分量调制以及故障特征频率受到转频调制的特点,从而导致故障特征提取困难。对此,将局部均值分解(local mean decomposition,简称LMD)与阶次跟踪分析相结合,提出了一种变转速工况下的滚动轴承...变转速工况下的滚动轴承故障振动信号具有多分量调制以及故障特征频率受到转频调制的特点,从而导致故障特征提取困难。对此,将局部均值分解(local mean decomposition,简称LMD)与阶次跟踪分析相结合,提出了一种变转速工况下的滚动轴承故障诊断方法。首先,采用阶次跟踪采样将时域滚动轴承故障振动信号转换到角域;然后,对角域信号进行LMD分解得到若干个乘积函数(product function,简称PF)分量;最后,对各个PF分量的瞬时幅值进行频谱分析,判断滚动轴承的故障部位和类型。通过对滚动轴承实验故障振动信号的分析,结果表明该方法能有效地应用于变转速工况下的滚动轴承故障诊断。展开更多
文摘变转速工况下的滚动轴承故障振动信号具有多分量调制以及故障特征频率受到转频调制的特点,从而导致故障特征提取困难。对此,将局部均值分解(local mean decomposition,简称LMD)与阶次跟踪分析相结合,提出了一种变转速工况下的滚动轴承故障诊断方法。首先,采用阶次跟踪采样将时域滚动轴承故障振动信号转换到角域;然后,对角域信号进行LMD分解得到若干个乘积函数(product function,简称PF)分量;最后,对各个PF分量的瞬时幅值进行频谱分析,判断滚动轴承的故障部位和类型。通过对滚动轴承实验故障振动信号的分析,结果表明该方法能有效地应用于变转速工况下的滚动轴承故障诊断。