针对中文儿童语音情感识别的准确性问题,提出了一种结合深度卷积神经网络(Deep Convolutional Neural Network,DPCNN)与堆叠长短时记忆(Stacked Long Short Term Memory,SLSTM)网络的融合模型,旨在提高中文儿童语音情感识别的准确性。通...针对中文儿童语音情感识别的准确性问题,提出了一种结合深度卷积神经网络(Deep Convolutional Neural Network,DPCNN)与堆叠长短时记忆(Stacked Long Short Term Memory,SLSTM)网络的融合模型,旨在提高中文儿童语音情感识别的准确性。通过DPCNN对语音信号中的长距离依赖关系进行提取,再利用SLSTM捕捉情感相关的序列依赖信息,最终通过softmax分类器实现情感状态的判别。实验结果显示,基于DPCNN-SLSTM的模型在中文儿童语音数据集上的情感识别准确率达到了92%,显著优于CNN、LSTM和CNN-LSTM模型。研究结果对于推动儿童语音情感识别技术的发展具有重要意义。展开更多
文摘在软件定义网络(software-defined networking,SDN)中,OpenFlow交换机通常采用三态内容可寻址存储器(ternary content addressable memory,TCAM)存储流表,以支持快速通配查找.然而,TCAM采用并行查找方式,查找能耗高,因此有必要为OpenFlow交换机选择合适的TCAM容量,以平衡分组转发时延和能耗.针对软件定义数据中心网络(software-defined data center network,SD-DCN)这一典型应用场景,利用多优先级M/G/1排队模型刻画OpenFlow交换机的分组处理过程,进而建立OpenFlow分组转发时延模型.同时,基于网络流分布特性,建立TCAM流表命中率模型,以求解OpenFlow分组转发时延与TCAM容量的关系式.在此基础上,结合TCAM查找能耗,建立OpenFlow分组转发能效联合优化模型,并设计优化算法求解TCAM最优容量.实验结果表明:所提时延模型比现有模型更能准确刻画OpenFlow分组转发时延.同时,利用优化算法求解不同参数配置下的TCAM最优容量,为SD-DCN实际部署提供参考依据.
文摘针对中文儿童语音情感识别的准确性问题,提出了一种结合深度卷积神经网络(Deep Convolutional Neural Network,DPCNN)与堆叠长短时记忆(Stacked Long Short Term Memory,SLSTM)网络的融合模型,旨在提高中文儿童语音情感识别的准确性。通过DPCNN对语音信号中的长距离依赖关系进行提取,再利用SLSTM捕捉情感相关的序列依赖信息,最终通过softmax分类器实现情感状态的判别。实验结果显示,基于DPCNN-SLSTM的模型在中文儿童语音数据集上的情感识别准确率达到了92%,显著优于CNN、LSTM和CNN-LSTM模型。研究结果对于推动儿童语音情感识别技术的发展具有重要意义。