室内定位环境中接入节点(access point,AP)部署密集时,针对参考节点(reference point,RP)接收到邻近AP的接收信号强度(received signal strength,RSS)数据相关性大,而导致聚类过程中聚类中心相关性高、聚类不准确等问题,提出了一种基于...室内定位环境中接入节点(access point,AP)部署密集时,针对参考节点(reference point,RP)接收到邻近AP的接收信号强度(received signal strength,RSS)数据相关性大,而导致聚类过程中聚类中心相关性高、聚类不准确等问题,提出了一种基于K-L变换的聚类算法;该算法通过K-L变换对RSS指纹数据去相关处理来保留原始指纹数据最大的特征信息数据,然后通过k-means聚类算法聚类能够得到更高的聚类准确率,从而来提高定位精度。实验结果表明,该算法比没有经过K-L变换去相关处理的聚类算法聚类准确率要高;并且在实验过程中确定RSS数据经K-L变换降维之后的维数为5、聚类中心数为5时,定位误差在2 m以内的概率提高了9.3%。展开更多