在车载分布式传声器阵列场景中,结合盲源分离TRINICON(Triple-N ICA for convolutive mixtures)算法与多说话人状态判决实现期望语音抽取。根据分布式传声器阵列与声源的相对位置关系,设计特定的盲源分离初始化条件以保证输出通道与声...在车载分布式传声器阵列场景中,结合盲源分离TRINICON(Triple-N ICA for convolutive mixtures)算法与多说话人状态判决实现期望语音抽取。根据分布式传声器阵列与声源的相对位置关系,设计特定的盲源分离初始化条件以保证输出通道与声源的映射关系;根据分布式传声器阵列的频响特点,设计特征矢量来进行多说话人判决,并将判决结果引入TRINICON算法参数迭代过程。在使用实际车载录音数据的仿真评测中,所提方法在不同信噪比下有较高的鲁棒性,可有效提升TRINICON算法的收敛速度和语音信号的信扰比,且可以确保准确的通道映射,评测结果表明该方法可以在车载场景中有效抽取出期望语音,为车载复杂场景下的声信息提取提供了一种可靠且收敛快速的解决方法。展开更多
文摘在车载分布式传声器阵列场景中,结合盲源分离TRINICON(Triple-N ICA for convolutive mixtures)算法与多说话人状态判决实现期望语音抽取。根据分布式传声器阵列与声源的相对位置关系,设计特定的盲源分离初始化条件以保证输出通道与声源的映射关系;根据分布式传声器阵列的频响特点,设计特征矢量来进行多说话人判决,并将判决结果引入TRINICON算法参数迭代过程。在使用实际车载录音数据的仿真评测中,所提方法在不同信噪比下有较高的鲁棒性,可有效提升TRINICON算法的收敛速度和语音信号的信扰比,且可以确保准确的通道映射,评测结果表明该方法可以在车载场景中有效抽取出期望语音,为车载复杂场景下的声信息提取提供了一种可靠且收敛快速的解决方法。