针对混沌搜索随机性的缺点和遍历性的优点,提出了一种基于蚂蚁智能体调度的混沌搜索算法(chaos optimization algorithm based on ant agent scheduling,CAAS)。该算法将解空间的每维变量都划分成若干子域并分配一定规模的蚂蚁智能体,...针对混沌搜索随机性的缺点和遍历性的优点,提出了一种基于蚂蚁智能体调度的混沌搜索算法(chaos optimization algorithm based on ant agent scheduling,CAAS)。该算法将解空间的每维变量都划分成若干子域并分配一定规模的蚂蚁智能体,蚂蚁智能体在各子域中进行混沌搜索。同时,根据每维变量各个子域中信息素浓度决定蚂蚁智能体在各个子域间的转移,以有效克服传统混沌优化算法的随机性,实现快速的全局最优搜索。分别采用传统混沌优化算法和CAAS对标准的非线性连续优化问题进行寻优。结果表明:CAAS的全局搜索性能、收敛速率都明显地优于混沌优化算法。最后,将该算法应用于对羧基苯甲醛含量软测量模型参数估计,取得良好的效果。展开更多
文摘针对混沌搜索随机性的缺点和遍历性的优点,提出了一种基于蚂蚁智能体调度的混沌搜索算法(chaos optimization algorithm based on ant agent scheduling,CAAS)。该算法将解空间的每维变量都划分成若干子域并分配一定规模的蚂蚁智能体,蚂蚁智能体在各子域中进行混沌搜索。同时,根据每维变量各个子域中信息素浓度决定蚂蚁智能体在各个子域间的转移,以有效克服传统混沌优化算法的随机性,实现快速的全局最优搜索。分别采用传统混沌优化算法和CAAS对标准的非线性连续优化问题进行寻优。结果表明:CAAS的全局搜索性能、收敛速率都明显地优于混沌优化算法。最后,将该算法应用于对羧基苯甲醛含量软测量模型参数估计,取得良好的效果。