由于社交媒体平台上所发布的非结构化信息存在数据不一致、重要程度不同等问题,使自动准确抽取所需信息并标注受灾级别成为一个有挑战性的工作。因此,结合形式概念分析(FCA)、词共现关系和上下文语义信息构建了水灾事件知识体系。利用...由于社交媒体平台上所发布的非结构化信息存在数据不一致、重要程度不同等问题,使自动准确抽取所需信息并标注受灾级别成为一个有挑战性的工作。因此,结合形式概念分析(FCA)、词共现关系和上下文语义信息构建了水灾事件知识体系。利用所构建的知识体系,基于TencentPretrain框架对大规模语言预训练模型(LLM)进行指令微调,构建了ChatFlowFlood信息抽取模型,可以在少量人工标记情况下,准确自动抽取被困情况、紧缺物资等信息;在信息抽取模型的基础上,通过模糊层次分析法(FAHP)和CRITIC法(CRiteria Importance Through Intercriteria Correlation)主客观结合评定求助信息的救援优先级,帮助决策者理解灾情紧急程度。实验结果表明,在中文社交媒体数据上,与ChatFlow-7B模型相比,ChatFlowFlood模型的FBERT指标提升了73.09%。展开更多
文摘由于社交媒体平台上所发布的非结构化信息存在数据不一致、重要程度不同等问题,使自动准确抽取所需信息并标注受灾级别成为一个有挑战性的工作。因此,结合形式概念分析(FCA)、词共现关系和上下文语义信息构建了水灾事件知识体系。利用所构建的知识体系,基于TencentPretrain框架对大规模语言预训练模型(LLM)进行指令微调,构建了ChatFlowFlood信息抽取模型,可以在少量人工标记情况下,准确自动抽取被困情况、紧缺物资等信息;在信息抽取模型的基础上,通过模糊层次分析法(FAHP)和CRITIC法(CRiteria Importance Through Intercriteria Correlation)主客观结合评定求助信息的救援优先级,帮助决策者理解灾情紧急程度。实验结果表明,在中文社交媒体数据上,与ChatFlow-7B模型相比,ChatFlowFlood模型的FBERT指标提升了73.09%。
文摘广泛的位置感知应用产生了大量的空间文本数据,其中既包含位置信息,也包含空间文本属性.为了利用这些丰富的信息来描述用户对路线的偏好,提出了面向空间兴趣区域的路线查询(region of interests oriented route query, ROIR).给定空间关键字集合及路线长度约束,ROIR检索满足长度约束和最高收益的由空间兴趣区域组成的路线.与传统的空间关键字路线查询相比,ROIR的对象由空间兴趣点扩展为兴趣区域,增加了用户的选择空间,使得查询结果的适用性更好.针对多种类型的海量空间兴趣点(point of interests, POI)及相关文本信息,设计了2层数据组织模型,模型中集成了POI对象的空间位置、关键字及POI对象间的转移关系.基于2层数据组织模型,提出了综合空间对象位置、转移图以及关键字3类信息的索引结构,同时预计算了关键字的收益统计值,并以签名方式存储在转移结点上.设计了ROIR路线查询精确算法.ROIR是一个NP难问题,为了有效地实现ROIR提出了近似率为1/ε的近似算法.利用真实数据集进行了详细的实验分析,评估了所提出算法的有效性.