期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
几何特征保持的文物点云去噪算法 被引量:8
1
作者 刘立恒 赵夫群 +2 位作者 汤慧 刘阳洋 耿国华 《数据采集与处理》 CSCD 北大核心 2020年第2期373-380,共8页
三维激光扫描是一种快速获取高精度点云的新技术,但由于受物体本身的构造、粗糙程度、纹理以及测量环境等因素的影响,获取的点云数据大多存在孤立的噪声点。针对文物点云数据模型中复杂噪声难以去除的问题,提出一种几何特征保持的点云... 三维激光扫描是一种快速获取高精度点云的新技术,但由于受物体本身的构造、粗糙程度、纹理以及测量环境等因素的影响,获取的点云数据大多存在孤立的噪声点。针对文物点云数据模型中复杂噪声难以去除的问题,提出一种几何特征保持的点云去噪算法。首先通过栅格划分删除点云中的大尺度噪声;然后定义点云中数据点的曲率因子和密度因子,并通过对其加权构造模糊C均值聚类(Fuzzy C-means clustering,FCM)的目标函数;最后采用该特征加权FCM算法删除小尺度噪声,从而实现点云的去噪处理。实验结果表明,该几何特征保持的去噪算法对文物点云数据具有良好的去噪效果,是一种有效的点云去噪算法。 展开更多
关键词 点云去噪 栅格化 模糊C均值聚类 平均曲率 点云密度
下载PDF
基于区域分割的低覆盖点云配准算法 被引量:7
2
作者 汤慧 周明全 耿国华 《计算机应用》 CSCD 北大核心 2019年第11期3355-3360,共6页
针对低覆盖点云配准的时间复杂度高、收敛速度缓慢以及对应点匹配易错等问题,提出一种基于区域分割的点云配准算法。首先,利用体积积分不变量计算点云上点的凹凸性,并提取凹凸特征点集;然后,采用基于混合流形谱聚类的分割算法对特征点... 针对低覆盖点云配准的时间复杂度高、收敛速度缓慢以及对应点匹配易错等问题,提出一种基于区域分割的点云配准算法。首先,利用体积积分不变量计算点云上点的凹凸性,并提取凹凸特征点集;然后,采用基于混合流形谱聚类的分割算法对特征点集进行区域分割,并采用基于奇异值分解(SVD)的迭代最近点(ICP)算法对区域进行配准,从而实现点云的精确配准。实验结果表明,所提算法通过区域分割可以大幅提高点云区域的覆盖率,并且无需迭代即可计算刚体变换的最佳旋转矩阵,其配准精度比已有算法提高了10%以上,配准时间降低了20%以上。因此,所提算法是一种精度高、速度快的低覆盖点云配准算法。 展开更多
关键词 点云配准 体积积分不变量 区域分割 奇异值分解 迭代最近点
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部