期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
等离子体增强原子层沉积AlN外延单晶GaN研究
1
作者 卢灏 许晟瑞 +9 位作者 黄永 陈兴 徐爽 刘旭 王心颢 高源 张雅超 段小玲 张进成 郝跃 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2024年第5期547-553,共7页
氮化镓(GaN)作为第三代半导体材料,具有较大的禁带宽度,较高的击穿电场强度、电子迁移率、热导系数以及直接带隙等优异特性,被广泛应用于电子器件和光电子器件中。由于与衬底的失配问题,早期工艺制备GaN材料难以获得高质量单晶GaN薄膜... 氮化镓(GaN)作为第三代半导体材料,具有较大的禁带宽度,较高的击穿电场强度、电子迁移率、热导系数以及直接带隙等优异特性,被广泛应用于电子器件和光电子器件中。由于与衬底的失配问题,早期工艺制备GaN材料难以获得高质量单晶GaN薄膜。直到采用两步生长法,即先在衬底上低温生长氮化铝(AlN)成核层,再高温生长GaN,才极大地提高了GaN材料的质量。目前用于制备AlN成核层的方法有磁控溅射以及分子束外延等,为了进一步提高GaN晶体质量,本研究提出在两英寸c面蓝宝石衬底上使用等离子体增强原子层沉积(Plasma-enhanced Atomic Layer Deposition,PEALD)方法制备AlN成核层来外延GaN。相比于磁控溅射方法,PEALD方法制备AlN的晶体质量更好;相比于分子束外延方法,PEALD方法的工艺简单、成本低且产量大。沉积AlN的表征结果表明,AlN沉积速率为0.1 nm/cycle,并且AlN薄膜具有随其厚度变化而变化的岛状形貌。外延GaN表征结果表明,当沉积厚度为20.8 nm的AlN时,GaN外延层的表面最平整,均方根粗糙度为0.272 nm,同时具有最好的光学特性以及最低的位错密度。本研究提出了在PEALD制备的AlN上外延单晶GaN的新方法,沉积20.8 nm的AlN有利于外延高质量的GaN薄膜,可以用于制备高电子迁移率晶体管及发光二极管。 展开更多
关键词 GAN ALN 等离子体增强原子层沉积 成核层 外延
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部