为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Rati-o)和结构相似度(SSIM,Structure Sim ilarity)作为图像质量的描述参数,给出“野点”的定义,提出“野点预测”并基于神经网络(NN,Neural Network)与支持向量机(SV...为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Rati-o)和结构相似度(SSIM,Structure Sim ilarity)作为图像质量的描述参数,给出“野点”的定义,提出“野点预测”并基于神经网络(NN,Neural Network)与支持向量机(SVM,Support VectorMa-chines)建立新的质量评价模型:神经网络用来获取质量评价映射函数,支持向量机实现样本分类.采用UTexas图像库数据进行仿真试验,质量评价模型预测图像质量的单调性比PSNR提高7.42%,质量评价模型预测结果的均方误差平方根比PSNR提高36.06%,模型性能测试中“野点”的数目相对减少,模型性能得以提高.试验结果表明该模型的输出能有效地反映图像的主观质量.展开更多
文摘为了有效地评价图像质量,利用峰值信噪比(PSNR,Pear Signal to Noise Rati-o)和结构相似度(SSIM,Structure Sim ilarity)作为图像质量的描述参数,给出“野点”的定义,提出“野点预测”并基于神经网络(NN,Neural Network)与支持向量机(SVM,Support VectorMa-chines)建立新的质量评价模型:神经网络用来获取质量评价映射函数,支持向量机实现样本分类.采用UTexas图像库数据进行仿真试验,质量评价模型预测图像质量的单调性比PSNR提高7.42%,质量评价模型预测结果的均方误差平方根比PSNR提高36.06%,模型性能测试中“野点”的数目相对减少,模型性能得以提高.试验结果表明该模型的输出能有效地反映图像的主观质量.