选用大型圆环形压电振子作为超声物料输送装置的换能器,通过对压电陶瓷片的极化分区方式重新设计,实现了同一压电振子具有多阶弯曲模态的多工作频率设计方案.利用AN-SYS有限元分析软件对环形输送振子结构进行动态设计,并对输送振子在20~...选用大型圆环形压电振子作为超声物料输送装置的换能器,通过对压电陶瓷片的极化分区方式重新设计,实现了同一压电振子具有多阶弯曲模态的多工作频率设计方案.利用AN-SYS有限元分析软件对环形输送振子结构进行动态设计,并对输送振子在20~50 k Hz范围内的各阶弯曲振型及其对应的固有频率进行了数值分析,确定了振子的结构尺寸,并优选出输送振子的B0,11、B0,15阶弯曲模态及对应的固有频率.在理论分析的基础上,设计制作了大型环状超声物料输送装置的实验样机,并对输送装置输送振子的弯曲模态及谐振频率进行了实验验证,实验结果表明输送振子的B0,11、B0,15阶弯曲模态的实际频率与有限元分析结果有一定的偏差,但在同阶弯曲模态下的两个谐振频率的频率差几乎为零.可为超声输送速度等宏观输送性能的理论及实验研究提供测试平台.展开更多
文摘选用大型圆环形压电振子作为超声物料输送装置的换能器,通过对压电陶瓷片的极化分区方式重新设计,实现了同一压电振子具有多阶弯曲模态的多工作频率设计方案.利用AN-SYS有限元分析软件对环形输送振子结构进行动态设计,并对输送振子在20~50 k Hz范围内的各阶弯曲振型及其对应的固有频率进行了数值分析,确定了振子的结构尺寸,并优选出输送振子的B0,11、B0,15阶弯曲模态及对应的固有频率.在理论分析的基础上,设计制作了大型环状超声物料输送装置的实验样机,并对输送装置输送振子的弯曲模态及谐振频率进行了实验验证,实验结果表明输送振子的B0,11、B0,15阶弯曲模态的实际频率与有限元分析结果有一定的偏差,但在同阶弯曲模态下的两个谐振频率的频率差几乎为零.可为超声输送速度等宏观输送性能的理论及实验研究提供测试平台.