期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Hadoop的SQL查询引擎性能研究 被引量:8
1
作者 吴黎兵 邱鑫 +2 位作者 叶璐瑶 王晓栋 聂雷 《华中师范大学学报(自然科学版)》 CAS 北大核心 2016年第2期174-182,共9页
Apache Hadoop处理超大规模数据集有非常出色的表现,相比较于传统的数据仓库和关系型数据库有不少优势.为了让原有业务能够充分利用Hadoop的优势,SQL-on-Hadoop系统越来越受到工业界和学术界的关注.基于Hadoop的SQL查询引擎种类繁多,各... Apache Hadoop处理超大规模数据集有非常出色的表现,相比较于传统的数据仓库和关系型数据库有不少优势.为了让原有业务能够充分利用Hadoop的优势,SQL-on-Hadoop系统越来越受到工业界和学术界的关注.基于Hadoop的SQL查询引擎种类繁多,各有优势,其运算引擎主要包括三种:1传统的Map/Reduce引擎;2新兴的Spark引擎;3基于shared-nothing架构的MPP引擎.本文选取了其中最有代表性的三种SQL查询引擎—Hive、Spark SQL、Impala,并使用了一种类TPC-H的测试基准对它们的决策支持能力进行测试及评估.从实验结果来看,Impala和Spark SQL相对于传统的Hive都有较大的提高,其中Impala的部分查询比Hive快了10倍以上,并且Impala在完成查询所占用的集群资源也是最少的.然而若从稳定性、易用性、兼容性和性能等多个方面进行对比,并不存在各方面均最优的查询引擎,因此在构建基于Hadoop的数据仓库系统时,推荐采用Hive+Impala或者Hive+Spark SQL的混合架构. 展开更多
关键词 大数据 SQL-on-Hadoop 数据仓库 SPARK SQL IMPALA Hive
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部