期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
一种改进的Mask RCNN特征融合实例分割方法 被引量:18
1
作者 温尧乐 李林燕 +1 位作者 尚欣茹 胡伏原 《计算机应用与软件》 北大核心 2019年第10期130-133,共4页
实例分割需要兼顾像素级的分类准确性和目标实例级的高级语义特性,非常具有挑战性。由于特征金字塔网络低层特征到高层特征的融合路径太长,导致低层特征在整个特征层次中的作用较弱。在特征金字塔网络的基础上,引入一条自下而上的路径... 实例分割需要兼顾像素级的分类准确性和目标实例级的高级语义特性,非常具有挑战性。由于特征金字塔网络低层特征到高层特征的融合路径太长,导致低层特征在整个特征层次中的作用较弱。在特征金字塔网络的基础上,引入一条自下而上的路径来增强整个特征层次,缩短较低层特征与顶部特征之间的融合路径,增强低层特征在整个特征层次中的作用;在卷积神经网络中引入空洞卷积算法扩大卷积感受域,进一步提升掩膜预测准确度。在MicrosoftCOCO数据集测试结果表明,该方法有效提高了实例分割的准确度。 展开更多
关键词 实例分割 特征融合 卷积神经网络 空洞卷积
下载PDF
一种基于YOLO算法的鱼群检测方法 被引量:13
2
作者 沈军宇 李林燕 +3 位作者 夏振平 张艳宁 温尧乐 胡伏原 《中国体视学与图像分析》 2018年第2期174-180,共7页
鱼群图像和视频的自动检测,在科学养殖与监管、海洋渔业监测等领域有广泛应用。为了有效提高鱼群检测的精确度,一些学者已经提出了基于深度学习的方法,但是实时高效的检测出鱼群的位置还未得到较好的解决。本文利用计算机视觉与深度学... 鱼群图像和视频的自动检测,在科学养殖与监管、海洋渔业监测等领域有广泛应用。为了有效提高鱼群检测的精确度,一些学者已经提出了基于深度学习的方法,但是实时高效的检测出鱼群的位置还未得到较好的解决。本文利用计算机视觉与深度学习方法相结合,提出了一种基于YOLO算法的端到端鱼群检测方法,通过提取整张图像的特征,利用卷积运算与非极大值抑制处理后直接估计出该图像内各目标位置信息,处理速度大幅度提升。同时,针对光线较暗的水下场景,算法依然能够实现场景中鱼群的检测定位。在Labeled Fishes in the Wild图像数据集上验证了本算法,可以达到30帧/秒的处理速度,对实时视频中鱼群的检测精度能够达到90%以上。 展开更多
关键词 YOLO算法 鱼群检测 图像处理 计算机视觉
下载PDF
深度卷积神经网络图像实例分割方法研究进展 被引量:13
3
作者 胡伏原 万新军 +3 位作者 沈鸣飞 徐江浪 姚睿 陶重犇 《计算机科学》 CSCD 北大核心 2022年第5期10-24,共15页
图像实例分割是图像处理和计算机视觉技术中关于图像理解的重要环节,随着深度学习和深层卷积神经网络日趋成熟,基于深度卷积神经网络的图像实例分割方法取得了跨越性进展。实例分割任务实际上是目标检测和语义分割两项任务的结合,可以... 图像实例分割是图像处理和计算机视觉技术中关于图像理解的重要环节,随着深度学习和深层卷积神经网络日趋成熟,基于深度卷积神经网络的图像实例分割方法取得了跨越性进展。实例分割任务实际上是目标检测和语义分割两项任务的结合,可以在像素层面完成识别图像中目标轮廓的任务。实例分割不仅可以定位图像中目标的位置,从像素层面上分割所有目标,还可以标注出图像中同一类别的不同个体,既是对图像的像素级分割,又是实例级理解。首先,阐述了图像实例分割产生的原因和深度卷积神经网络的作用。然后,根据图像实例分割方法的过程和特征,分别从两阶段和单阶段的角度介绍了图像实例分割的研究进展,详细阐述了两类方法的优势和不足,进而总结了各类实例分割方法对区域、特征提取和掩膜的设计思路。此外,归纳了图像实例分割方法的性能评价标准和常用的公开数据集,并在此基础上对比和评估了主流的图像实例分割模型的分割精度。最后,指出了当前图像实例分割存在的问题及解决思路,并对其未来发展进行了总结和展望。 展开更多
关键词 实例分割 深度卷积神经网络 目标检测 语义分割 两阶段 单阶段
下载PDF
增强型深度确定策略梯度算法 被引量:9
4
作者 陈建平 何超 +3 位作者 刘全 吴宏杰 胡伏原 傅启明 《通信学报》 EI CSCD 北大核心 2018年第11期106-115,共10页
针对深度确定策略梯度算法收敛速率较慢的问题,提出了一种增强型深度确定策略梯度(E-DDPG)算法。该算法在深度确定策略梯度算法的基础上,重新构建两个新的样本池——多样性样本池和高误差样本池。在算法执行过程中,训练样本分别从多样... 针对深度确定策略梯度算法收敛速率较慢的问题,提出了一种增强型深度确定策略梯度(E-DDPG)算法。该算法在深度确定策略梯度算法的基础上,重新构建两个新的样本池——多样性样本池和高误差样本池。在算法执行过程中,训练样本分别从多样性样本池和高误差样本池按比例选取,以兼顾样本多样性以及样本价值信息,提高样本的利用效率和算法的收敛性能。此外,进一步从理论上证明了利用自模拟度量方法对样本进行相似性度量的合理性,建立值函数与样本相似性之间的关系。将E-DDPG算法以及DDPG算法用于经典的Pendulum问题和MountainCar问题,实验结果表明,E-DDPG具有更好的收敛稳定性,同时具有更快的收敛速率。 展开更多
关键词 深度强化学习 样本排序 自模拟度量 时间差分误差
下载PDF
孪生导向锚框RPN网络实时目标跟踪 被引量:10
5
作者 尚欣茹 温尧乐 +1 位作者 奚雪峰 胡伏原 《中国图象图形学报》 CSCD 北大核心 2021年第2期415-424,共10页
目的区域推荐网络(region proposal network,RPN)与孪生网络(Siamese)相结合进行视频目标跟踪,显示了较高的准确性。然而,孪生RPN网络(Siamese region proposal network,Siam RPN)目标跟踪器依赖于密集的锚框策略,会产生大量冗余的锚框... 目的区域推荐网络(region proposal network,RPN)与孪生网络(Siamese)相结合进行视频目标跟踪,显示了较高的准确性。然而,孪生RPN网络(Siamese region proposal network,Siam RPN)目标跟踪器依赖于密集的锚框策略,会产生大量冗余的锚框并影响跟踪的精度和速度。为了解决该问题,本文提出了孪生导向锚框RPN网络(Siamese-guided anchor RPN,Siamese GA-RPN)。方法Siamese GA-RPN的主要思想是利用语义特征来指导锚框生成。其中导向锚框网络包括位置预测模块和形状预测模块,这两个模块分别利用孪生网络中CNN(convolutional neural network)产生的语义特征预测锚框的位置和长宽尺寸,减少了冗余锚框的产生。然后,进一步设计了特征自适应模块,利用每个锚框的形状信息,通过可变卷积层来修正跟踪目标的原始特征图,降低目标特征与锚框信息的不一致性,提高了目标跟踪的准确性。结果在3个具有挑战性的视频跟踪基准数据集VOT(video object tracking)2015、VOT2016和VOT2017上进行了跟踪实验,测试了算法在目标快速移动、遮挡和光照等复杂场景下的跟踪性能,并与多种优秀算法在准确性和鲁棒性两个评价指标上进行定量比较。在VOT2015数据集上,本文算法与孪生RPN网络相比,准确性提高了1.72%,鲁棒性提高了5.17%;在VOT2016数据集上,本文算法与孪生RPN网络相比,准确性提高了3.6%,鲁棒性提高了6.6%;在VOT2017数据集上进行实时实验,本文算法表现出了较好的实时跟踪效果。结论通过孪生导向锚框RPN网络提高了锚框生成的有效性,确保了特征与锚框的一致性,实现了对目标的精确定位,较好地解决了锚框尺寸对目标跟踪精度的影响。在目标尺度发生变化、遮挡、光照条件变化和目标快速运动等复杂场景下仍然表现出了较强的鲁棒性和适应性。 展开更多
关键词 目标跟踪 孪生网络 RPN网络 导向锚框 特征适应
原文传递
一种基于CNN的足迹图像检索与匹配方法 被引量:7
6
作者 陈扬 曾诚 +4 位作者 程成 邹恩岑 顾建伟 陆悠 奚雪峰 《南京师范大学学报(工程技术版)》 CAS 2018年第3期39-45,共7页
足迹图像作为犯罪现场的重要痕迹物证之一,在破解串并案上有着不可忽视的作用.传统的足迹图像检索与匹配,需要耗费大量的时间与人力,极大地影响了破案进展.卷积神经网络(CNN)在图像识别与检索上表现出很好的效果.面向公安足迹图像比对... 足迹图像作为犯罪现场的重要痕迹物证之一,在破解串并案上有着不可忽视的作用.传统的足迹图像检索与匹配,需要耗费大量的时间与人力,极大地影响了破案进展.卷积神经网络(CNN)在图像识别与检索上表现出很好的效果.面向公安足迹图像比对实战需求,提出了一种基于卷积神经网络的足迹图像检索与匹配方法,对检索结果设置不同检索区,可以满足不同业务需求.初步实验表明该方法的有效性和实用性. 展开更多
关键词 深度学习 卷积神经网络 足迹检索 图像处理
下载PDF
面向图像自动语句标注的注意力反馈模型 被引量:5
7
作者 吕凡 胡伏原 +2 位作者 张艳宁 夏振平 盛胜利 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2019年第7期1122-1129,共8页
图像自动语句标注利用计算机自动生成描述图像内容的语句,在服务机器人等领域有广泛应用.许多学者已经提出了一些基于注意力机制的算法,但是注意力分散问题以及由注意力分散引起的生成语句错乱问题还未得到较好解决.在传统注意力机制的... 图像自动语句标注利用计算机自动生成描述图像内容的语句,在服务机器人等领域有广泛应用.许多学者已经提出了一些基于注意力机制的算法,但是注意力分散问题以及由注意力分散引起的生成语句错乱问题还未得到较好解决.在传统注意力机制的基础上引入注意力反馈机制,利用关注信息的图像特征指导文本生成,同时借助生成文本中的关注信息进一步修正图像中的关注区域,该过程不断强化图像和文本中的关键信息匹配、优化生成的语句.针对常用数据集Flickr8k, Flickr30k 和MSCOCO 的实验结果表明,该模型在一定程度上解决了注意力分散和语句顺序错乱问题,比其他基于注意力机制方法标注的关注区域更加准确,生成语句更加通顺. 展开更多
关键词 图像自动语句标注 注意力机制 注意力反馈
下载PDF
基于随机方差减小方法的DDPG算法 被引量:3
8
作者 杨薛钰 陈建平 +2 位作者 傅启明 陆悠 吴宏杰 《计算机工程与应用》 CSCD 北大核心 2021年第19期104-111,共8页
针对深度确定性策略梯度算法(DDPG)收敛速度比较慢,训练不稳定,方差过大,样本应用效率低的问题,提出了一种基于随机方差减小梯度方法的深度确定性策略梯度算法(SVR-DDPG)。该算法通过利用随机方差减小梯度技术(SVRG)提出一种新的创新优... 针对深度确定性策略梯度算法(DDPG)收敛速度比较慢,训练不稳定,方差过大,样本应用效率低的问题,提出了一种基于随机方差减小梯度方法的深度确定性策略梯度算法(SVR-DDPG)。该算法通过利用随机方差减小梯度技术(SVRG)提出一种新的创新优化策略,将之运用到DDPG算法之中,在DDPG算法的参数更新过程中,加入了随机方差减小梯度技术,利用该方法的更新方式,使得估计的梯度方差有一个不断减小的上界,令方差不断缩小,从而在小的随机训练子集的基础上找到更加精确的梯度方向,以此来解决了由近似梯度估计误差引发的问题,加快了算法的收敛速度。将SVR-DDPG算法以及DDPG算法应用于Pendulum和Mountain Car问题,实验结果表明,SVR-DDPG算法具有比原算法更快的收敛速度,更好的稳定性,以此证明了算法的有效性。 展开更多
关键词 深度强化学习 深度Q学习算法(DQN) 深度确定性策略梯度算法(DDPG) 随机方差缩减梯度技术
下载PDF
基于杂波抑制的海平线红外弱小目标检测 被引量:4
9
作者 杨会玲 吴玉宏 +2 位作者 孙慧婷 杜博军 何昕 《液晶与显示》 CAS CSCD 北大核心 2017年第4期316-324,共9页
针对红外图像中海天交接处目标能量较弱,难以获得精确检测的问题,本文提出一种基于杂波抑制的海平线弱小目标检测方法。该方法通过对红外图像特征分析,检测海平线像素特征,去除障碍物干扰,确定海平线区域;对海平线区域采用改进的均值差... 针对红外图像中海天交接处目标能量较弱,难以获得精确检测的问题,本文提出一种基于杂波抑制的海平线弱小目标检测方法。该方法通过对红外图像特征分析,检测海平线像素特征,去除障碍物干扰,确定海平线区域;对海平线区域采用改进的均值差滤波与背景建模,去除海平线杂波;杂波滤除后,计算两个区间自适应阈值作为滞后阈值,从而检测出海平线弱小目标像素。实验结果表明,本文提出的算法能够有效去除海平线杂波,确定海平线区域,有效提取海平线像素,从而准确检测出海平线弱小目标,具有较高的检测率与较低的虚警率,验证了该算法的有效性。 展开更多
关键词 区域分割 杂波抑制 滞后阈值 红外弱小目标检测
下载PDF
基于姿态编码器的2D/3D脊椎医学图像实时配准方法 被引量:2
10
作者 徐少康 张战成 +2 位作者 姚浩男 邹智伟 张宝成 《计算机应用》 CSCD 北大核心 2023年第2期589-594,共6页
2D/3D医学图像配准是骨科手术三维实时导航中的一项关键技术,然而传统的基于优化迭代的2D/3D配准方法需要经过多次迭代计算,无法满足医生在手术过程中对于实时配准的要求。针对该问题,提出一种基于自编码器的姿态回归网络来通过隐空间... 2D/3D医学图像配准是骨科手术三维实时导航中的一项关键技术,然而传统的基于优化迭代的2D/3D配准方法需要经过多次迭代计算,无法满足医生在手术过程中对于实时配准的要求。针对该问题,提出一种基于自编码器的姿态回归网络来通过隐空间解码捕获几何姿态信息,从而快速地回归出术中X射线图像对应的术前脊椎位置的3D姿态,并经过重新投影生成最终的配准图像。通过引入新的损失函数,以“粗细”结合配准的方式对模型进行约束,保证了姿态回归的精确度。在CTSpine1K脊椎数据集中抽取100组CT扫描图像进行10折交叉验证,实验结果表明:所提出的模型所生成的配准结果图像与X射线图像的平均绝对误差(MAE)为0.04,平均目标配准误差(mTRE)为1.16 mm,单帧耗时1.7 s。与基于传统优化的方法相比,该模型配准时间大幅缩短。相较于基于学习的方法,该模型在快速配准的同时,保证了较高的配准精度。可见,所提模型可以满足术中实时高精配准的要求。 展开更多
关键词 2D/3D图像配准 自编码器 隐空间 姿态回归 骨科手术
下载PDF
基于深度学习的人体行为检测方法研究综述 被引量:1
11
作者 沈加炜 陆一鸣 +2 位作者 陈晓艺 钱美玲 陆卫忠 《计算机与现代化》 2023年第9期1-9,共9页
当下结合计算机视觉和视频的特征提取对人体行为动作进行捕捉识别的研究炙手可热,并且其在智能视频监控和智能家居的人机交互等其他领域方向上的应用场景也十分丰富。基于传统方法的人体行为检测算法有着依赖数据样本过多、易受环境噪... 当下结合计算机视觉和视频的特征提取对人体行为动作进行捕捉识别的研究炙手可热,并且其在智能视频监控和智能家居的人机交互等其他领域方向上的应用场景也十分丰富。基于传统方法的人体行为检测算法有着依赖数据样本过多、易受环境噪音影响从而降低精确率等缺点,而不断发展的深度学习技术逐渐展现出它的优势,可以很好地解决这些问题。本文基于此,首先介绍一些目前常用的行为识别数据集并在此基础上剖析当下基于深度学习的人体行为识别检测的研究现状;其次描述常见的人体行为识别检测方法及其识别的流程;最后对现存的各种行为识别检测方法性能、现存问题进行总结和未来发展方向进行展望。 展开更多
关键词 深度学习 人体行为检测 智能监控 行为数据集
下载PDF
基于多重指数移动平均评估的DDPG算法 被引量:1
12
作者 范晶晶 陈建平 +2 位作者 傅启明 陆悠 吴宏杰 《计算机工程与设计》 北大核心 2021年第11期3084-3090,共7页
针对深度确定性策略梯度算法中双网络结构的不稳定及单评论家评估不准确的问题,提出基于多重指数移动平均评估的DDPG算法。介绍EMA-Q网络和目标Q网络合作得出目标更新值,对多个评论家给出的Q值求平均,降低单评论家评估的不准确性。样本... 针对深度确定性策略梯度算法中双网络结构的不稳定及单评论家评估不准确的问题,提出基于多重指数移动平均评估的DDPG算法。介绍EMA-Q网络和目标Q网络合作得出目标更新值,对多个评论家给出的Q值求平均,降低单评论家评估的不准确性。样本池部分引入双重经验回放方法,采用两个样本池分别存储不同的经验,提高算法的收敛性能。将所提算法及原始DDPG算法分别实验于经典的Pendulum问题和Mountain Car问题中。实验结果表明,与传统的DDPG算法相比,所提算法准确性更好,稳定性更高,收敛速度明显提升。 展开更多
关键词 深度学习 强化学习 指数移动平均 平均评估 双重经验回放
下载PDF
基于深度学习的灾后建筑物损坏程度检测综述
13
作者 陈晓艺 陆一鸣 +2 位作者 沈加炜 钱美玲 陆卫忠 《计算机技术与发展》 2023年第9期1-7,共7页
遥感图像分类和语义分割是一项非常有应用价值的计算机视觉任务。由于现实生活对遥感信息有更高的需求,使计算机视觉领域中高分辨率遥感图像研究日益活跃。其广泛应用于国土资源监测、道路提取和土地划分等领域。自然灾害后建筑物损害... 遥感图像分类和语义分割是一项非常有应用价值的计算机视觉任务。由于现实生活对遥感信息有更高的需求,使计算机视觉领域中高分辨率遥感图像研究日益活跃。其广泛应用于国土资源监测、道路提取和土地划分等领域。自然灾害后建筑物损害程度检测也作为其应用领域之一,目的是对灾后建筑物损坏程度进行相关检测和评估。近年来,随着深度学习的发展,遥感图像领域取得巨大进展,深度学习在遥感图像分类和语义分割领域中的应用获得了巨大的成功,使其解析遥感图像信息和提取底物特征的速度更快,也在很大程度上提高了处理遥感图像相关任务的准确性。因此,深度学习中的计算机视觉技术对自然灾害后建筑物损害程度检测具有很大帮助。该文介绍了基于深度学习的自然灾害后建筑物损坏程度检测的相关任务、难点和发展现状。接着对xBD数据集进行介绍,并说明了不同算法模型的相关评价标准。然后对深度学习方法中几种应用于建筑物损坏程度检测的卷积神经网络模型进行总结和对比。最后对其存在的问题及未来可能的发展方向进行了讨论。 展开更多
关键词 遥感图像 深度学习 计算机视觉 自然灾害 建筑物损坏程度检测
下载PDF
基于场景图的段落生成序列图像方法
14
作者 张玮琪 汤轶丰 +1 位作者 李林燕 胡伏原 《计算机科学》 CSCD 北大核心 2022年第1期233-240,共8页
通过生成对抗网络进行段落生成序列图像的任务已经可以生成质量较高的图像。然而当输入的文本涉及多个对象和关系时,文本序列的上下文信息难以提取,生成图像的对象布局容易产生混乱,生成的对象细节不足。针对该问题,文中在StoryGAN的基... 通过生成对抗网络进行段落生成序列图像的任务已经可以生成质量较高的图像。然而当输入的文本涉及多个对象和关系时,文本序列的上下文信息难以提取,生成图像的对象布局容易产生混乱,生成的对象细节不足。针对该问题,文中在StoryGAN的基础上,提出了一种基于场景图的段落生成序列图像方法。首先,通过图卷积将段落转换为多个场景图,每个场景图包含对应文本的对象和关系信息;然后,预测对象的边界框和分割掩膜来计算生成场景布局;最后,根据场景布局和上下文信息生成更符合对象及其关系的序列图像。在CLEVR-SV和CoDraw-SV数据集上进行测试,该方法可以生成包含多个对象及其关系的64×64像素的序列图像。实验结果表明,在CLEVR-SV数据集上,所提方法的SSIM和FID比StoryGAN分别提升了1.34%和9.49%;在CoDraw-SV数据集上,所提方法的ACC比StoryGAN提高了7.40%。所提方法提高了生成场景的布局合理性,不仅可以生成包含多个对象和关系的图像序列,而且生成的图像质量更高,细节更清晰。 展开更多
关键词 生成对抗网络 图卷积神经网络 场景布局 文本生成图像
下载PDF
基于改进全局—局部注意网络的室内场景识别方法 被引量:1
15
作者 徐江浪 万新军 +1 位作者 夏振平 胡伏原 《计算机应用研究》 CSCD 北大核心 2022年第1期316-320,共5页
由于卷积神经网络(CNN)大多侧重于全局特征学习,忽略了包含更多细节的局部特征信息,使得室内场景识别的准确率难以提高。针对这一问题,提出了基于改进全局—局部注意网络(GLANet)的室内场景识别方法。首先,利用GLANet捕捉场景图像的全... 由于卷积神经网络(CNN)大多侧重于全局特征学习,忽略了包含更多细节的局部特征信息,使得室内场景识别的准确率难以提高。针对这一问题,提出了基于改进全局—局部注意网络(GLANet)的室内场景识别方法。首先,利用GLANet捕捉场景图像的全局特征和局部特征,增加图像特征中的细节信息;然后,在局部网络中引入non-local注意力模块,通过注意力图和特征图的卷积来进一步保留图像的细节特征,最后融合网络不同阶段的多种特征进行分类。通过在MIT Indoor67和SUN397数据集上的训练和验证,所提方法的识别准确率与LGN方法相比分别提高了1.98%和3.07%。实验结果表明,该算法能够有效捕获全局语义信息和精细的局部细节,显著提高了识别准确率。 展开更多
关键词 深度学习 卷积神经网络 室内场景识别 全局特征 局部特征
下载PDF
基于布局图的多物体场景新视角图像生成网络
16
作者 高小天 张乾 +1 位作者 吕凡 胡伏原 《计算机应用研究》 CSCD 北大核心 2022年第8期2526-2531,共6页
新视角图像生成任务指通过多幅参考图像,生成场景新视角图像。然而多物体场景存在物体间遮挡,物体信息获取不全,导致生成的新视角场景图像存在伪影、错位问题。为解决该问题,提出一种借助场景布局图指导的新视角图像生成网络,并标注了... 新视角图像生成任务指通过多幅参考图像,生成场景新视角图像。然而多物体场景存在物体间遮挡,物体信息获取不全,导致生成的新视角场景图像存在伪影、错位问题。为解决该问题,提出一种借助场景布局图指导的新视角图像生成网络,并标注了全新的多物体场景数据集(multi-objects novel view synthesis,MONVS)。首先,将场景的多个布局图信息和对应的相机位姿信息输入到布局图预测模块,计算出新视角下的场景布局图信息;然后,利用场景中标注的物体边界框信息构建不同物体的对象集合,借助像素预测模块生成新视角场景下的各个物体信息;最后,将得到的新视角布局图和各个物体信息输入到场景生成器中构建新视角下的场景图像。在MONVS和ShapeNet cars数据集上与最新的几种方法进行了比较,实验数据和可视化结果表明,在多物体场景的新视角图像生成中,所提方法在两个数据集上都有较好的效果表现,有效地解决了生成图像中存在伪影和多物体在场景中位置信息不准确的问题。 展开更多
关键词 多物体场景 遮挡现象 图像伪影 布局图 新视角图像生成
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部