密文域可逆信息隐藏是一种以密文为载体进行信息嵌入与提取,同时能够对嵌入信息后的密文进行无失真解密并恢复出原始明文的信息隐藏技术,具有隐私保护与信息隐藏双重功能,在密文域数据处理与管理中具有较好的应用前景.因此,提出了一种基...密文域可逆信息隐藏是一种以密文为载体进行信息嵌入与提取,同时能够对嵌入信息后的密文进行无失真解密并恢复出原始明文的信息隐藏技术,具有隐私保护与信息隐藏双重功能,在密文域数据处理与管理中具有较好的应用前景.因此,提出了一种基于R-LWE(ring-learning with errors)的密文域多比特可逆信息隐藏方案.首先使用R-LWE算法对载体明文进行快速高强度加密,然后通过对单位比特明文在密文空间映射区域的重量化以及对应密文的再编码,实现了在密文中嵌入多比特隐藏信息;嵌入信息时,根据加密过程中的数据分布特征来进行嵌入编码,保证了加解密与信息提取的鲁棒性;解密与提取信息时,先计算量化系数,而后采用不同的量化标准分别进行解密或信息提取,实现了解密与提取过程的可分离.分析方案的正确性时,首先推导方案出错的概率,说明了算法中引入的噪声的标准差对方案正确性的影响,然后结合理论分析与实验得出了保证方案正确性的噪声标准差的取值区间;通过推导嵌入后密文的分布函数,分析密文统计特征的变化,论证了密文中嵌入隐藏信息的不可感知性.实验结果表明:该文方案不仅能够实现嵌入后密文的无差错解密与秘密信息的可靠提取,并且单位比特明文在密文域能够负载多比特隐藏信息,密文嵌入率最高可达到0.2353bpb.展开更多
针对信息隐藏中含密载体会留有修改痕迹,从根本上难以抵抗基于统计的隐写分析算法检测的问题,提出一种基于生成对抗网络(GAN)的信息隐藏方案。该方案首先利用生成对抗网络中的生成模型G以噪声为驱动生成原始载体信息;其次,使用±1...针对信息隐藏中含密载体会留有修改痕迹,从根本上难以抵抗基于统计的隐写分析算法检测的问题,提出一种基于生成对抗网络(GAN)的信息隐藏方案。该方案首先利用生成对抗网络中的生成模型G以噪声为驱动生成原始载体信息;其次,使用±1嵌入算法,将秘密消息嵌入到生成的载体信息中生成含密信息;最终,将含密信息与真实图像样本作为生成对抗网络中判别模型D的输入,进行迭代优化,同时使用判别模型S来检测图像是否存在隐写操作,反馈生成图像质量的特性,G&D&S三者在迭代过程中相互竞争,性能不断提高。该方案所采用的策略与SGAN(Steganographic GAN)和SSGAN(Secure Steganography based on GAN)两种方案不同,主要区别是将含密信息与真实图像样本作为判别模型的输入,对于判别网络D进行重构,使网络更好地评估生成图像的性能。与SGAN和SSGAN相比,该方案使得攻击者在隐写分析正确性上分别降低了13. 1%和6. 4%。实验结果表明,新的信息隐藏方案通过生成更合适的载体信息来保证信息隐藏的安全性,能够有效抵抗隐写算法的检测,在抗隐写分析和安全性指标上明显优于对比方案。展开更多
针对现有Niederreiter公钥密码方案容易遭受区分攻击和信息集攻击(ISD)的现状,提出一种改进的Niederreiter公钥密码方案。首先,对Niederreiter公钥密码方案中的置换矩阵进行了改进,把原有的置换矩阵替换为随机矩阵;其次,对Niederreiter...针对现有Niederreiter公钥密码方案容易遭受区分攻击和信息集攻击(ISD)的现状,提出一种改进的Niederreiter公钥密码方案。首先,对Niederreiter公钥密码方案中的置换矩阵进行了改进,把原有的置换矩阵替换为随机矩阵;其次,对Niederreiter公钥密码方案中的错误向量进行了随机拆分,隐藏错误向量的汉明重量;最后,对Niederreiter公钥密码方案的加解密过程进行了改进,以提高方案的安全性。分析表明,改进方案可以抵抗区分攻击和ISD;改进方案的公钥量小于Baldi等提出的方案(BALDI M,BIANCHI M,CHIARALUCE F,et al.Enhanced public key security for the Mc Eliece cryptosystem.Journal of Cryptology,2016,29(1):1-27)的公钥量,在80比特的安全级下,改进方案的公钥量从原方案的28 408比特降低到4 800比特;在128比特的安全级下,改进方案的公钥量从原方案的57 368比特降低到12 240比特。作为抗量子密码方案之一,改进方案的生存力和竞争力增强。展开更多
文摘密文域可逆信息隐藏是一种以密文为载体进行信息嵌入与提取,同时能够对嵌入信息后的密文进行无失真解密并恢复出原始明文的信息隐藏技术,具有隐私保护与信息隐藏双重功能,在密文域数据处理与管理中具有较好的应用前景.因此,提出了一种基于R-LWE(ring-learning with errors)的密文域多比特可逆信息隐藏方案.首先使用R-LWE算法对载体明文进行快速高强度加密,然后通过对单位比特明文在密文空间映射区域的重量化以及对应密文的再编码,实现了在密文中嵌入多比特隐藏信息;嵌入信息时,根据加密过程中的数据分布特征来进行嵌入编码,保证了加解密与信息提取的鲁棒性;解密与提取信息时,先计算量化系数,而后采用不同的量化标准分别进行解密或信息提取,实现了解密与提取过程的可分离.分析方案的正确性时,首先推导方案出错的概率,说明了算法中引入的噪声的标准差对方案正确性的影响,然后结合理论分析与实验得出了保证方案正确性的噪声标准差的取值区间;通过推导嵌入后密文的分布函数,分析密文统计特征的变化,论证了密文中嵌入隐藏信息的不可感知性.实验结果表明:该文方案不仅能够实现嵌入后密文的无差错解密与秘密信息的可靠提取,并且单位比特明文在密文域能够负载多比特隐藏信息,密文嵌入率最高可达到0.2353bpb.
文摘针对信息隐藏中含密载体会留有修改痕迹,从根本上难以抵抗基于统计的隐写分析算法检测的问题,提出一种基于生成对抗网络(GAN)的信息隐藏方案。该方案首先利用生成对抗网络中的生成模型G以噪声为驱动生成原始载体信息;其次,使用±1嵌入算法,将秘密消息嵌入到生成的载体信息中生成含密信息;最终,将含密信息与真实图像样本作为生成对抗网络中判别模型D的输入,进行迭代优化,同时使用判别模型S来检测图像是否存在隐写操作,反馈生成图像质量的特性,G&D&S三者在迭代过程中相互竞争,性能不断提高。该方案所采用的策略与SGAN(Steganographic GAN)和SSGAN(Secure Steganography based on GAN)两种方案不同,主要区别是将含密信息与真实图像样本作为判别模型的输入,对于判别网络D进行重构,使网络更好地评估生成图像的性能。与SGAN和SSGAN相比,该方案使得攻击者在隐写分析正确性上分别降低了13. 1%和6. 4%。实验结果表明,新的信息隐藏方案通过生成更合适的载体信息来保证信息隐藏的安全性,能够有效抵抗隐写算法的检测,在抗隐写分析和安全性指标上明显优于对比方案。
文摘针对现有Niederreiter公钥密码方案容易遭受区分攻击和信息集攻击(ISD)的现状,提出一种改进的Niederreiter公钥密码方案。首先,对Niederreiter公钥密码方案中的置换矩阵进行了改进,把原有的置换矩阵替换为随机矩阵;其次,对Niederreiter公钥密码方案中的错误向量进行了随机拆分,隐藏错误向量的汉明重量;最后,对Niederreiter公钥密码方案的加解密过程进行了改进,以提高方案的安全性。分析表明,改进方案可以抵抗区分攻击和ISD;改进方案的公钥量小于Baldi等提出的方案(BALDI M,BIANCHI M,CHIARALUCE F,et al.Enhanced public key security for the Mc Eliece cryptosystem.Journal of Cryptology,2016,29(1):1-27)的公钥量,在80比特的安全级下,改进方案的公钥量从原方案的28 408比特降低到4 800比特;在128比特的安全级下,改进方案的公钥量从原方案的57 368比特降低到12 240比特。作为抗量子密码方案之一,改进方案的生存力和竞争力增强。