针对雷达信号脉内调制识别算法存在着准确率低的问题,提出一种新的雷达脉内调制类型自动识别方法,该方法首先提取雷达信号时频图像的形状特征和纹理特征构成融合特征,然后将融合特征输入随机森林分类器,实现信号的分类识别。仿真实验中...针对雷达信号脉内调制识别算法存在着准确率低的问题,提出一种新的雷达脉内调制类型自动识别方法,该方法首先提取雷达信号时频图像的形状特征和纹理特征构成融合特征,然后将融合特征输入随机森林分类器,实现信号的分类识别。仿真实验中对8种常见的不同调制类型的雷达信号进行识别,提出的算法在信噪比为-2 d B时识别准确率可以达到90%以上,验证了该方法的有效性。展开更多
针对传统算法在面对复杂环境中低截获概率(lour probability of intercept,LPI)信号检测时不能对噪声进行有效的滤波,提出了一种基于自适应形态学的LPI信号检测预处理方法。首先建立单一尺度形态学滤波模型;其次在单一尺度形态学频谱数...针对传统算法在面对复杂环境中低截获概率(lour probability of intercept,LPI)信号检测时不能对噪声进行有效的滤波,提出了一种基于自适应形态学的LPI信号检测预处理方法。首先建立单一尺度形态学滤波模型;其次在单一尺度形态学频谱数据做分段插值处理时,在每段采用加入比例系数的改进形态学腐蚀和膨胀机理,再将插值后的序列与原信号相减来对其进行修正;最后通过算法仿真,验证了改进的算法在弱化结构元素尺度选择矛盾对不同带宽处的噪声基底估计的影响的同时,还能大大降低整个算法运算量的效果,取得了良好的滤波效果。展开更多
文摘针对雷达信号脉内调制识别算法存在着准确率低的问题,提出一种新的雷达脉内调制类型自动识别方法,该方法首先提取雷达信号时频图像的形状特征和纹理特征构成融合特征,然后将融合特征输入随机森林分类器,实现信号的分类识别。仿真实验中对8种常见的不同调制类型的雷达信号进行识别,提出的算法在信噪比为-2 d B时识别准确率可以达到90%以上,验证了该方法的有效性。
文摘针对传统算法在面对复杂环境中低截获概率(lour probability of intercept,LPI)信号检测时不能对噪声进行有效的滤波,提出了一种基于自适应形态学的LPI信号检测预处理方法。首先建立单一尺度形态学滤波模型;其次在单一尺度形态学频谱数据做分段插值处理时,在每段采用加入比例系数的改进形态学腐蚀和膨胀机理,再将插值后的序列与原信号相减来对其进行修正;最后通过算法仿真,验证了改进的算法在弱化结构元素尺度选择矛盾对不同带宽处的噪声基底估计的影响的同时,还能大大降低整个算法运算量的效果,取得了良好的滤波效果。