随着风电等可再生能源在配电网中渗透率的不断提高,准确分析其故障电流暂态特性已成为智能配电网保护与控制的基石。双馈风电机组是当前最主流的风电机型,当电网发生严重故障时,由于转子侧变换器(Rotor side converter,RSC)的容量约束,...随着风电等可再生能源在配电网中渗透率的不断提高,准确分析其故障电流暂态特性已成为智能配电网保护与控制的基石。双馈风电机组是当前最主流的风电机型,当电网发生严重故障时,由于转子侧变换器(Rotor side converter,RSC)的容量约束,其转子电压会限幅输出,此时控制特性会迥异于轻度故障工况。然而,已有研究鲜有考虑RSC输出电压约束对故障电流的影响,从而无法准确反映真实的故障电流特性。针对该问题,首先建立了计及电流闭环控制和输出电压约束的双馈风电机组动态模型。在此基础上,推导出RSC输出限幅后转子故障电流的解析表达式。随后,揭示了RSC输出电压约束导致的控制器参数等效限幅特性,并得出闭环控制下的故障电流取决于控制参数的等效限幅值而非其设计值的结论。最后,在MATLAB/Simulink中搭建了1.5MW双馈风电机组接入电网的仿真模型,仿真结果验证了前述理论分析的正确性。展开更多
文摘随着风电等可再生能源在配电网中渗透率的不断提高,准确分析其故障电流暂态特性已成为智能配电网保护与控制的基石。双馈风电机组是当前最主流的风电机型,当电网发生严重故障时,由于转子侧变换器(Rotor side converter,RSC)的容量约束,其转子电压会限幅输出,此时控制特性会迥异于轻度故障工况。然而,已有研究鲜有考虑RSC输出电压约束对故障电流的影响,从而无法准确反映真实的故障电流特性。针对该问题,首先建立了计及电流闭环控制和输出电压约束的双馈风电机组动态模型。在此基础上,推导出RSC输出限幅后转子故障电流的解析表达式。随后,揭示了RSC输出电压约束导致的控制器参数等效限幅特性,并得出闭环控制下的故障电流取决于控制参数的等效限幅值而非其设计值的结论。最后,在MATLAB/Simulink中搭建了1.5MW双馈风电机组接入电网的仿真模型,仿真结果验证了前述理论分析的正确性。